直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

中国的AI发展到什么程度了?

回答

目前中国的 AI 发展呈现出强势崛起的态势。中国的模型在面对制裁时展现出坚韧和战略智慧,在一些方面取得了显著成果:

  • 达到或超过了 GPT4 水平。
  • 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。
  • 模型凭借自身优势正在“屠榜”,证明在 AI 领域仍占据重要地位。

同时,AI 在中国的发展也带来了一些新的现象和挑战,如 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024 年人工智能现状:辉煌、戏谑和“牛市”

但如果有空!还是请看我顶着高烧,在抖包袱又表面平和、不断搜寻脑海中的词汇、尝试用滑稽的幽默来博君一笑努力吧!again,以下内容anti-AI!人工撰写by 🦄ChaXOpenAI的o1模型主导:OpenAI最新推出的o1模型正在重新定义AI在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。中国的AI崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们也仍然在牌桌之上……生成式AI的数十亿繁荣:AI初创公司正赚得盆满钵满,但可持续性仍然像一个能理解细微差别的聊天机器人一样难以捉摸。报告链接:[The State of AI 2024](https://www.stateof.ai/)(友情提示,报告212页)|[报告的中文翻译版](https://waytoagi.feishu.cn/record/QdFmrUoueeS3Tucpm8Icntf1nJh)英文解读链接:[The State of AI 2024:Brilliance,Banter,and Bull Runs](https://esg4lgjwa43v.sg.larksuite.com/wiki/RXn1wNWgJifxcDkgsDWl8UjAgFb?from=from_copylink)

AGI 万字长文(下)| 2024,分叉与洪流

2024年内图片-超短视频的精细操控:表情、细致动作、视频-文字匹配有一定操控能力的生成式短视频:风格化、动漫风最先成熟;真人稍晚AI音频能力长足进展:带感情的AI配音基本成熟“全真AI颜值网红”出现,可以稳定输出视频,可以直播带货游戏AI NPC有里程碑式进展,出现新的游戏生产方式AI男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈实时生成的内容开始在社交媒体内容、广告中出现AI Agent有明确进展,办公场景“AI助手”开始有良好使用体验2AI的商业模式开始有明确用例:数据合成、工程平台、模型安全等可穿戴-全天候AI硬件层出不穷,虽然大多数不会成功中国AI达到或超过GPT4水平;美国出现GPT5;世界上开始现“主权AI”华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)AI造成的DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧AI立法、伦理讨论仍然大规模落后于技术进展……2025-2027AI 3D技术、物理规则成熟:正常人无法区别AI生成还是实景拍摄全真AI虚拟人成熟:包含感情的AI NPC成熟,开放世界游戏成熟;游戏中几乎无法区别真人和NPCAR/VR技术大规模商用接近AGI的技术出现人与AI配合的工作方式成为常态,很多日常决策开始由AI来执行AI生产的数据量超过全人类生产数据量,“真实”成为稀缺资源具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破“人的模型”出现,出现“集中化AGI”与“个人AGI”的历史分叉AI引发的社会问题开始加重,结构性失业开始出现AGI对于地缘政治的影响开始显露……"Limit of Understanding"; Yifei Gong 2024,with Dall-E

4.4 历史更新

[title]4.4历史更新[heading2]2024年10月[heading3]10月21日《[追OpenAI的人](https://mp.weixin.qq.com/s/Ab5_sc8ztfQWjDmwmRcWog)》智谱对OpenAI的追赶,至少持续了4年。这是人工智能大模型爆发的4年。智谱的CEO张鹏倒不太焦虑,有人形容他「情绪稳定得像一个AI机器人」。智谱现在做的,就是全力在技术上追赶世界顶级的OpenAI,至于商业化,那就「沿途下蛋」。这篇文章讲述了其背后的故事。《[2024年人工智能现状:辉煌、戏谑和“牛市”](https://waytoagi.feishu.cn/wiki/O7sSwlxpSi7wVGk8YurcnbfAnzb)》作者Cha,她以好玩的口吻解读了每年发表的《State of AI Report》报告,比如:OpenAI的o1模型引领AI在科学推理领域的新高度,中国的AI发展不受制裁影响,依然强势崛起。同时,生成式AI初创公司蓬勃发展,但可持续性仍待观察。此外,AI对选举和就业的潜在影响尚未显现,但未来将深远影响人类历史。[报告的英文原版](https://waytoagi.feishu.cn/record/G8tArBK2Je7vPRckcZ4ch71RnBd)|[报告的中文翻译版](https://waytoagi.feishu.cn/record/QdFmrUoueeS3Tucpm8Icntf1nJh)

其他人在问
关于ai换脸的信息
以下是关于 AI 换脸的信息: 制作方法:每个人都可以用 10 分钟轻松制作 AI 换脸、AI 数字人视频。 变脸前和变脸后的视频示例: 变脸前的视频: 变脸后的视频: 本次 GPU 服务器的使用花费: 总成本: 时间:大约 10 分钟左右 制作数字人视频:免费 数字人换脸:约 0.8 元 数字人换脸时长:经实际测试 1 分 28 秒的视频,总转换时间在 200 秒。 实现工具: 开源、免费的解决方案:facefusion 开源地址:https://github.com/facefusion/facefusion 本机解决方案:需要 python 环境,以及要安装视频解码器等多个依赖的软件,需要一定的编程知识。不推荐本地化安装,因为依赖 GPU,本地计算机没有 GPU 或者 GPU 显存较小,执行速度将会非常缓慢。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供好的大模型运行环境和计算能力。选择 AutoDL 时,注册完成后在算力市场中选择能接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。通过模型镜像启动 GPU 服务器,在算法社区查找 facefusion 镜像。 辅助工具: E4S:精细化的面部交换(换脸)技术,更加精细和高级,能确保换出来的脸在形状、纹理和光照方面自然逼真,精确处理脸部细节。项目地址: Misgif:可以将脸放入喜欢的 GIF 表情包中的应用,具有娱乐性。网址: Face Swapper:AI 换脸工具,一次替换多张脸,支持 JPG、PNG、WEBP 格式,最大 1024px 分辨率。应用场景包括时尚、美容、电影、媒体、人力资源。网址:
2024-10-31
有哪些制作学生个人信息表的 AI
目前暂时没有专门用于制作学生个人信息表的特定 AI 工具。但您可以利用一些通用的办公软件或在线表格工具,结合其智能化的功能来辅助完成,例如 Microsoft Excel、WPS 表格等,它们具有一些自动填充、数据验证等功能,可以提高制作信息表的效率。
2024-10-31
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
有趣的AI项目
以下是为您整理的有趣的 AI 项目相关内容: 项目一: 标题:A proinnovation approach 相关内容:新的监测功能将对监管进行实时评估。AI 在医疗保健和医学中的应用蓬勃发展,如 DeepMind 的蛋白质折叠 AI 解决生物学重大问题等。同时也提到了 AI 可能带来的新风险,如损害身心健康、侵犯个人隐私和破坏人权等。大型专业 AI 公司对英国经济有重大贡献。 项目二: 标题:2024 年人工智能现状:辉煌、戏谑和“牛市” 相关内容:预计明年会有团队花费超过 10 亿美元训练单个大规模模型。计算需求的增长超出了电网的支持能力。AI 对选举的影响尚未显现。人工智能持续有令人兴奋的突破,也存在未解决的伦理问题。OpenAI、Meta 等在不同领域领先,中国实验室也在崛起。
2024-10-31
AI最新新闻
以下是 1 月 19 日的一些 AI 最新新闻: 1. AWPortrait 1.3 人像模型更新,优化了棚拍质感和皮肤肌理,增强户外场景优化,提高对面部表情的识别,包括微笑、大笑等。链接:https://x.com/xiaohuggg/status/1748316750230487385?s=20 2. Meta AI 的自奖励语言模型,采用新型训练方法,模型自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。链接:https://x.com/xiaohuggg/status/1748303100438577478?s=20 3. 微软推出 AI 阅读教练工具,为学生设计,创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。链接:https://x.com/xiaohuggg/status/1748295530382528713?s=20 4. Stefano Rivera 的 AI 交互式“MR 木偶秀”,利用多种 AI 工具如 ChatGPT、DallE 3,包括 3D 渲染、场景构建、音乐和语音技术。链接:https://x.com/xiaohuggg/status/1748263355763339544?s=20 5. KREA AI 实时生图新功能,提供文本到图像、背景去除和橡皮擦工具,实时生成图像,提高创作便捷性。体验地址:https://krea.ai/apps/image/realtime 链接:https://x.com/xiaohuggg/status/1748214523373477928?s=20 6. 推荐开源知识库程序 Outline,特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。GitHub:https://github.com/outline/outline
2024-10-31
最新AI进展
以下是关于最新 AI 进展的相关内容: AI 技术的发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 10 月 14 日的 AI 相关进展: 1. ChatGPT 命令工具上线,提供搜索、图像、O1 推理三种命令,使普通模型也具备高级推理能力,测试表明所有模型均支持命令调用,显著提升了 ChatGPT 的整体能力。 2. Anthropic CEO 展望未来,认为 AI 将在 5 10 年内助力扫除几乎所有疾病,寿命翻倍至 150 岁,包括在医学进展方面实现 50 100 年的突破,如大规模预防自然传染病与开发“万能疫苗”,降低癌症死亡率,治愈遗传疾病,开发抗衰老疗法,帮助治疗抑郁症、精神分裂症等疾病,同时自动化劳动解放人类创造力,推动全球经济增长,但也需平衡风险与潜力。 3. ChatGPT 4.0 Canvas 功能助力写作,提供思路、润色语言、内容扩展,支持快速修改与撤回版本,极大提升写作效率,未来或将支持多人协作、数据图表生成、甚至直接生成 PPT。 对于新手学习 AI,要持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。
2024-10-31
最新的AI可以做到什么程度的智能
目前最新的 AI 能够达到以下程度的智能: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 例如 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型像 GPT2 等实际上没有真正连贯回应的能力。
2024-10-30
现在的ai+宠物,发展到什么程度了?
目前,AI 与宠物的结合已经取得了一定的发展,主要体现在以下几个方面: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人更好地照顾宠物,比如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 2. AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,可增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 3. AI 宠物图像生成:使用生成式 AI 模型,能根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。
2024-10-10
现在ai发展到什么程度了
目前 AI 的发展呈现出以下情况: 1. 企业大模型市场崛起,通用大模型遇到算力瓶颈,英伟达在算力方面获利颇丰,但背后存在能源问题。同时,大模型还面临知识不够的问题,需要将饱含人类智慧的高含量知识训练进去,例如从百度贴吧的“弱智吧”获取知识。 2. AI 技术正在加速发展,且没有减缓的迹象,尽管媒体报道可能减少,但实际进展非常迅速。 3. 在专利审查领域,AI 得到广泛应用,通过自动化和智能化手段帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。
2024-09-22
AI发展到什么程度了
目前,AI 正处于快速发展的阶段。在日常生活中,AI 已广泛应用于交通、天气预测以及电视节目推荐等方面,能够以过去难以想象的方式观察、理解世界并与之互动。 AI 技术正在加速发展,且没有减缓的迹象。虽然媒体报道可能有所减少,但实际进展非常迅速。 在生物制药和医疗保健等领域,AI 正在促使其产业化,被应用于药物设计、诊断、医疗服务交付和后台运营等方方面面。例如,机器能够学习只有经过专业培训才能做到的事情,并且能够轻松复制和扩展专业知识,实现规模效应。生物技术也因 AI 得以大规模扩展。
2024-09-03
llama.cpp处理过的模型可以有多大程度的提升
在计算机科学领域,特别是在机器学习和人工智能方面,性能的提升可以有多种方式。对于 llama.cpp处理过的模型,可能的提升可以包括但不限于以下几个方面: 1. 模型精度提升:通过改进模型结构、调整超参数、增加训练数据量等方式,可以提高模型的预测准确性和泛化能力。这样的提升可以使得模型在实际应用中取得更好的效果。 2. 模型速度提升:通过优化模型的计算效率、减少模型的复杂度、使用更高效的算法等方式,可以提高模型的推理速度和训练速度。这样的提升可以使得模型在实时应用和大规模数据处理中更具竞争力。 3. 模型规模提升:通过增加模型的容量、引入更多的特征或上下文信息、使用集成学习等方式,可以提升模型的表达能力和适应性,使得模型可以处理更复杂的任务和更丰富的数据。 4. 模型可解释性提升:通过改进模型的可解释性、增加模型的解释性特征、使用可解释的模型结构等方式,可以提高模型对决策过程的透明度和可理解性,增强模型在实际应用中的可信度和可接受性。 5. 模型稳定性提升:通过改进模型的鲁棒性、增加模型的泛化能力、引入鲁棒的训练和评估方法等方式,可以提高模型在不同数据分布和环境条件下的稳定性和可靠性,减少模型在实际应用中出现的意外情况和错误。 这些提升可以单独或者组合起来实现,取决于具体的应用场景、数据特征、任务要求和资源限制等因素。通过不断改进和优化,llama.cpp处理过的模型可以在性能上取得更大程度的提升,从而更好地满足实际需求。
2024-04-18
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
AI 未来的发展趋势是什么?
AI 未来的发展趋势主要包括以下几个方面: 1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。 3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。 4. 应用领域:看好在医疗、教育和科学领域的应用。 5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。 7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
2024-10-30
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
根据数智经济你觉得它的发展是怎样的
数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。 发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。 总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。
2024-10-29
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
AGI发展现状
AGI(通用人工智能)的发展现状如下: OpenAI 自 2015 年成立以来,一直将 AGI 作为战略目标之一,随着技术发展,如 ChatGPT、多模态大模型和 AI Agent 等,我们似乎越来越接近这一目标。 AGI 有五个发展等级: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AlphaGeometry 结合神经语言模型的预测功能和基于规则的推理引擎找出解决方案,并采用生成大量合成训练数据的方法解决数据短缺问题。 Sam 表示通用人工智能(AGI)的发展指日可待,但它对世界的影响可能比预期小。OpenAI 正在与美国军方合作开发开源网络安全软件,努力预防退伍军人自杀,且开发武器和有害工具不被允许。 2024 年内 AGI 的机会点包括:图片超短视频的精细操控;有一定操控能力的生成式短视频;AI 音频能力长足进展;“全真 AI 颜值网红”出现;游戏 AI NPC 有里程碑式进展;AI 男/女朋友聊天基本成熟;实时生成的内容开始在社交媒体内容、广告中出现;AI Agent 有明确进展;AI 的商业模式开始有明确用例;可穿戴全天候 AI 硬件层出不穷;中国 AI 达到或超过 GPT4 水平,美国出现 GPT5,世界上开始现“主权 AI”;华为昇腾生态开始形成,国内推理芯片开始国产替代;AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野并引发担忧;AI 立法、伦理讨论仍大规模落后于技术进展。 2025 2027 年的发展预测包括:AI 3D 技术、物理规则成熟;全真 AI 虚拟人成熟;AR/VR 技术大规模商用;接近 AGI 的技术出现;人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行;AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源;具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破;“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉;AI 引发的社会问题开始加重,结构性失业开始出现;AGI 对于地缘政治的影响开始显露。
2024-10-29
中国上市公司在ai应用方面的进展
目前,中国上市公司在 AI 应用方面取得了一定进展。 一方面,许多公司正将 AI 融入其工作流程,以快速达成 KPI、扩张规模和降低成本。例如,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。 另一方面,对于 AI 应用层的创业者来说,存在一些问题和探索。中国企业软件的发展曾受人均 GDP 不够高、人力成本等因素限制,但如果 AI 能极大降低软件成本并提高效率,可能带来价值突破。我们期待中国 2B 的 AI 软件应用实现跨越式发展。 此外,还有一些相关的资源可供参考,如 2022 2024 年融资 2000 万美金以上的公司列表和详细公司分析、AI Grant 公司列表和详细公司分析、AIGC 行业与商业观察等。同时,也有关于 AI 变革公司/产业实践探索的相关内容,如 2023 年年报中中国上市公司对生成式 AI 的使用,以及安克创新的 AI 实践分析等。
2024-10-28
现在中国可以使用的相对较先进的AI音乐制作网站,推荐3个
以下为您推荐 3 个中国可以使用的相对较先进的 AI 音乐制作网站: 1. UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,人声和器乐质量极高,功能全面。支持上传音轨、REMIX、INPAINT 等高级功能,允许细致地控制音乐生成过程,但有一定技术门槛。 2. SUNO.ai:用户数量众多、广受欢迎的 AI 音乐生成平台。操作方便,支持多语言,能够一次生成完整曲长的音乐,但音质相对较差。 3. Microphonestudio.app:无需昂贵的录音设备即可进行多轨录音。
2024-10-28
我在中国互联网哪里可以学到很好的ai技术
在中国互联网上,您可以通过以下途径学习很好的 AI 技术: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 技术的研究成果。 2. 专业书籍:查找与 AI 相关的专业书籍,深入学习 AI 知识。 3. 在线课程和教程: 参加 Coursera、edX、Udacity 等平台上的 AI 课程。 在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区: 加入如 Stack Overflow、Reddit 的 r/AI 等相关论坛和社区,与专业人士交流学习。 关注 AI 相关的博客和新闻网站,了解最新技术动态。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 相关项目,了解其应用和实现。 6. 企业案例研究:研究如 Autodesk、Siemens 等公司在 AI 领域的应用案例,了解实际项目中的效果。 对于新手学习 AI,您可以: 1. 了解 AI 基本概念: 阅读「」部分,熟悉术语和基础概念。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到初学者课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 4. 实践和尝试:实践巩固知识,使用各种产品创作,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-18
中国国内有没有好用的AI论文写作工具
在中国国内,以下是一些好用的 AI 论文写作工具: 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有一些其他相关工具: 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,提供全面英文论文润色服务。 ChatGPT:可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具。 HyperWrite:基于 AI 的写作助手和大纲生成器。 Wordtune:AI 驱动的文本改写和润色工具。 Smodin:提供 AI 驱动的论文撰写功能。 需要注意的是,使用这些工具时,应结合自己的写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-10-02
量子位:2024中国AIGC广告营销产业全景报告
以下是关于《量子位:2024 中国 AIGC 广告营销产业全景报告》的相关信息: 生成式 AI 从供给端到需求端对广告营销各环节玩家造成冲击。在工作流程方面,AI 最先赋能策略洞察与内容生产,大模型加持的数字人带来全新交互体验。在典型场景中,创意生产工具呈平民化趋势,品牌可以为“一个人”量身定制广告。同时,生成式 AI 在创新广告形式、实现自动化营销、企业商业模式革新上重塑了广告营销格局。
2024-09-30
中国最好的几个AI工具网站
以下是中国一些较好的 AI 工具网站: liblib.art:图像生成类网站,4 月访问量约 198 万次。 沉浸式翻译:翻译类网站,4 月访问量约 183 万次。 墨刀 AI:设计工具类网站,4 月访问量约 179 万次。 无限画:图像生成类网站,4 月访问量约 144 万次。 autoDL 云服务租用:Agent 类网站,4 月访问量约 135 万次。 百度 Chat:AI ChatBots 类网站,4 月访问量约 120 万次。 AIbot ai 工具集:导航网站类,4 月访问量约 116 万次。 创客贴 AI:设计工具类网站,4 月访问量约 111 万次。 MasterGo:设计工具类网站,4 月访问量约 105 万次。 美图设计室:图像编辑类网站,4 月访问量约 101 万次。 魔搭社区阿里达摩院:AI 训练模型类网站,4 月访问量约 98.5 万次。 此外,Kimi 智能助手也是一个不错的选择,它是 ChatGPT 的国产平替,不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。PC 端可通过下载。
2024-09-28