Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

未来AI的发展趋势是什么?

Answer

未来 AI 的发展趋势主要包括以下几个方面:

  1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT-4 水平。
  2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。
  3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。
  4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。
  5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。
  6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。
  7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。
  8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

[title]宝玉日报[heading2]9月21日o1 preview模型升级迅速,将很快达到GPT-4水平。AI五阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。专注与深度学习:OpenAI坚持专注方向,实现AGI并持续调整策略。未来前景:看好AI在医疗、教育和科学领域的应用。🔗[https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman](https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman)🔗[https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s](https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s)🔗[https://x.com/dotey/status/1836604587333030073](https://x.com/dotey/status/1836604587333030073)

红杉|AI 50 未来公司

诸如AI革命等生产力革命促使成本下降。本世纪的技术进步从根本上降低了硬件成本,但从医疗到教育产业的人力成本却急剧上升。AI有可能降低这些关键领域的成本,使人们更容易获得和负担得起这些服务。这些变化需要以负责任的方式进行,以减少就业机会的流失,推动就业机会的创造。AI将使我们能够以更少的投入做更多的事情,但政府和民营企业需要共同努力,对每个人进行再培训,并增强他们的能力。在我们社会的某些最关键的领域,AI将改变成本结构并提高生产力。它有可能带来更好的教育、更健康的人口和更有生产力的人,通过抽象出琐碎的工作,让我们把注意力集中在更重要的问题上,并为未来提供更好的工具。它可以解放更多的人去解决更多的问题,从而创造一个更美好的社会。从2024年AI50强榜单中可以看出,AI涉及的领域有扩大的趋势,这份榜单的应用范围比以往任何时候都更加广泛。我们预计在未来几年,这份榜单的深度和广度都将不断扩大。2024年其实只是一个开始。

2024 年人工智能现状:辉煌、戏谑和“牛市”

更多资金,更多问题:预计明年会有团队花费超过10亿美元来训练单个大型模型。生成式AI的热潮不会消退,只会变得更加“奢华”。😱计算压力的挑战:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。这就像一个健身网红的体重增长超过了突破了牛顿定理、超过了人类健身房的承重能力——总有一天,天花板可能会真的塌下来。😱AI介入选举:虽然预期的AI对选举和就业的影响尚未成真,但这并不意味着我们可以掉以轻心。但请记住,AI的影响就像潘多拉魔盒:一旦打开,将会在接下来的几年里、几十年甚至百年亦或是人类此后的历史中都无处不在。而众所周知,诚如百年前的黑格尔所预言的那样,我们人类啊!从历史中获得唯一的教训就是……我们没有从历史中获得任何教训!🤔总而言之,言而总之,人工智能领域依然是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。在这个舞台上,OpenAI、Meta和来自东方的神秘力量等各方势力竞相角逐,2024年的AI领域更像是一场激动人心的UFC(无限制综合格斗冠军赛)比赛而非平静的学术研讨会。所以,请准备好你的爆米花和GPU吧——新的一年里,AI将继续突破界限、挑战极限,甚至可能重新定义一些我们熟悉的词汇!

Others are asking
微软认证AI工程师
以下是关于微软认证 AI 工程师的相关信息: MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,在教育行业工作 15 年以上,过去半年一直在探索教育场景中的 AI 实践。 胡凯翔是微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册。 韦恩是微软提示词工程师,智能体创业者,WayToAGI 共建者,多平台 Agent 开发者,企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问。
2025-03-02
安防行业如何应用好AI
在安防行业应用好 AI 可以从以下几个方面考虑: 1. 技术层面: 大模型时代,训练大模型涉及 GPU 调用、模型架构设计、数据处理、调优等多个环节,具有较高的资源门槛和技术复杂度。 2. 竞争态势: 当计算机视觉的商业化场景转向安防后,创业公司面临来自安防行业巨头的竞争。创业公司虽更懂 AI 视觉识别,但需从头学习研发硬件产品、搭建营销体系;而巨头有完善的供应链和销售体系,但需要引入 AI 技术。 大模型时代的创业公司对手从海康威视换成了资源更多、决心明确的 BAT 和字节等大公司。 3. 创新与生态: 新技术能否找到新生态至关重要,包括新的供应链、新的硬件载体、新的渠道和新的需求与用户来源。 创业公司和大公司间的竞赛结果取决于新技术能在多大程度上颠覆原有体验,新技术的进入门槛、赛道长度以及能否找到新生态。 此外,在管理方面,要善于为 AI 应用提供明确的沟通和上下文,明晰其能力边界,合理授权并监督检查,擅长任务拆解和整合以提升协作效率。同时,医保严禁 AI 自动开处方,而在其他领域如 Coinbase 全面推动 AI 应用,提高了效率并广泛应用于多个方面。
2025-03-02
AI能不能帮人写小说赚钱
AI 可以帮助人写小说赚钱。例如,南瓜博士上个月参加了一场 AI 创作微信小说的比赛,尽管在提交过程中出现了一些小失误,但仍凭借 AI 的帮助获奖。此外,使用 AI 可以草拟各种类型的初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等。通过与 AI 系统互动,提高提示质量,能让写作效果更好。还可以将自己的文本粘贴到 AI 中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿等。AI 也能帮助完成一些任务,如写邮件、创建销售模板、提供商业计划的下一步等。总之,合理利用 AI 能在写作方面提供支持,从而有机会通过写小说获得收益。
2025-03-02
企业本地化部署AI
企业本地化部署 AI 主要包括以下方面: RPA 与财务税务问答机器人:RPA 与 AI 结合具有多种应用和优势。操作流程简单,无需代码,适合小白和无 IT 经验者。有众多应用案例,如奥康和方太在各部门的订单处理等操作中搭建了大量脚本。封装了众多组件,还可通过触发器设置机器人每天工作。数字化包括标准化、自动化、RPA 加 AI 使机器人更智能三个阶段,交付的是动态能力,让用户自己搭建机器人。产品可本地化私有部署,面向企业有费用,私有化部署能保障数据安全,企业大模型可封装调用。RPA 有容错处理方式,但受多种因素影响。 LangChain 与 NVIDIA:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程。支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验。其自托管特性可保障数据安全,提供预构建容器,具有可扩展性。开始使用 NIM 可在 NVIDIA API 目录中获取多种 AI 模型,它是 NVIDIA AI Enterprise 的一部分。 从 LLM 大语言模型、知识库到微信机器人:以 windows10 系统为例,安装环境时先在系统中输入“cmd”打开命令窗口,确认是否有 python 和 pip。若没有则需安装,如安装 python 可下载安装包。部署项目时下载 COW 机器人项目并解压缩。
2025-03-02
ai写作的内容
以下是关于 AI 写作的相关内容: 1. 陈财猫从自身经历出发,认为 AI+内容创作是现阶段最好的赛道,具有完美的产品模型匹配和产品市场匹配,且天花板高。其业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力等;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。同时,作者认为 AI 创作的内容有灵魂,期望 AI 能力进一步提升,改变每个人的生活。 2. 利用 AI 不到 30 分钟打造爆款公众号文章的关键在于提供清晰且具有指导性的提示词(prompt)。好的提示词能帮助 AI 更准确理解需求并生成符合预期的内容。若已有基本提示词,AI 可生成基础文章,若想提升质量,可提供更详细、具创意的提示词,让 AI 更好地捕捉文章的语气、风格和重点。例如,可给出“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词,它不仅为 AI 提供明确指导,还设定文章基本结构和内容要求,AI 会据此生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调以符合预期和公众号风格。
2025-03-02
利用AI打造个人知识库
利用 AI 打造个人知识库可以通过以下方式实现: 1. 使用 GPT 打造个人知识库: 将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可直观或通过比较 embeddings 向量得出关联度最高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”,最后发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 2. 搭建基于 GPT API 的定制化知识库: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示,向量间距离有多种计算方式,如欧几里得距离。 3. 小七姐提出的 AI 时代知识管理体系构建: 包括读书时看到有触动的文本作为书摘。 对书摘整理归纳、标记重点、打赏标签放入笔记系统,准备深度思考和实践。 基于笔记提到的 AI 对人的赋能模式展开深度实践,如通过 AI 信息杠杆迅速掌握相关知识。 基于实践生成自己的观点和决策,并打造成体系化的内容产品实现价值。 最终把碎片化知识在知识库中流转,从书摘变成体系化内容,把“别人说的话”变成“自己的智慧”。 希望以上内容能帮助您打造个人知识库。
2025-03-01
有关于数据标注行业发展趋势的文章吗?
以下是关于数据标注行业发展趋势的相关内容: 数据标注行业呈现出以下几个主要的发展趋势: 从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。 数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。 数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。 此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。
2025-02-17
ai在人力资源服务行业上的发展趋势
以下是关于 AI 在人力资源服务行业发展趋势的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了信贷评估、欺诈评分等方面的改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括教育、游戏、商业等。与传统 AI/ML 侧重基于现有数据进行预测或分类不同,生成式人工智能能创造全新内容。这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。在金融服务行业,预计优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在人力资源服务行业,相关报告如《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,无需雇佣额外劳动力,传统劳动力市场将和软件融合成新市场。从企业组织结构来看,提供这种 AI 劳动力的产品有两种形式。
2024-12-10
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
现在数字人直播还有发展趋势吗?
数字人直播仍有发展趋势。 数字人是运用数字技术创造出来的,虽现阶段不能高度智能,但已在生活场景中常见,且随 AI 技术发展迎来应用爆发。业界对其尚无准确定义,一般可分真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,应用于影视和直播带货,其表现质量与建模和动捕设备精度有关,不过视觉算法进步使无昂贵设备时也能有不错效果。 数字人直播的盈利方式包括直接卖数字人工具软件(分实时和非实时驱动,价格不等)和提供数字人运营服务按成交额抽佣。适用品类和场景方面,适用于不需要强展示的商品如品牌食品饮料、虚拟商品,店播效果较好,数据能保持跟真人一样,不适用于促销场景和服装等过品快、建模成本高的商品。 AI 直播存在一定壁垒,如更真实的对口型、更低的响应延迟等,目前仍有技术门槛,但时间拉长技术上无壁垒,不会一家独大,可能有 4 5 家一线效果公司,大多为二三线效果公司。真正把客户服务好、能规模化扩张的公司更有价值,有资源和业务的大平台下场可能带来降维打击。同时,在电商领域,数字人配套的运营服务才是关键,不能依赖数字人,其目前只能是辅助。在店播场景下,实时互动必要性不高。
2024-12-06
目前中国国内AI大模型的发展趋势
目前中国国内 AI 大模型的发展呈现出以下趋势: 1. 发展阶段:自 ChatGPT 发布以来,大致经历了准备期(国内产学研迅速形成大模型共识)、成长期(大模型数量和质量逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 2. 竞争态势:2023 年上半年,国内众多企业纷纷投入资源研究类 GPT 架构,试图创造国产 AGI;下半年则纷纷转向“垂直应用”和“商业化”。 3. 技术差距:中美在 AGI 技术上仍存在差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有不小差距。 4. 企业表现:百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。但大厂们在冲击 AGI 方面虽有资源优势,但实际效果尚未有明确亮点,且受内部短期考核压力和其他业务、政治考量的影响。 要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在通往 AGI 之路的知识库里,会定期更新相关的排名报告,可供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-04
ai是大发展趋势吗
AI 是大发展趋势。以下是一些支持这一观点的理由: 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注该领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 金融服务业将比想象得更快地接纳生成式 AI:人工智能和机器学习在金融服务行业已有十多年应用历史,促成了一系列改进。大型语言模型通过生成式人工智能代表重大飞跃,正在改变多个领域,这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 红杉资本观点:AI 正处于重要发展阶段,一年内实现了与 SaaS 行业十年相同的收入。产业变革规模大,相关行业的 TAM 将扩展到几乎所有人类参与的行业。应用层大量创新,重点将转移到更高层次认知任务。拥抱 AI 的公司竞争优势将因成本降低、投资成本降低、收入增长及创新传统行业而上升。 综上所述,AI 具有巨大的发展潜力和趋势。
2024-11-22
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,如何在ai帮助下在未来几年寻找创业方向和努力路径
对于一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,在未来几年借助 AI 寻找创业方向和努力路径,可以参考以下建议: 首先,了解不同的发展路径特点。在学术研究方面,要培养适应能力,保持对研究的热爱以应对长期缺乏即时反馈的挑战。创业如同“当海盗”,充满刺激和不确定性,需要快速学习、适应市场和承担风险,虽能直接面对社会,但可能带来巨大压力并影响生活质量。在大公司工作需确保个人目标与公司一致,创业公司有生存压力,而打工人有稳定收入和学习机会,但可能限制思维。 其次,明确选择路径的逻辑。无论选择哪种路径,强烈的内在动机是长期成功的关键,动机可能源于内心欲望或对失败的恐惧,要直面并理解它们,将其转化为积极向上的动机,确保符合个人价值观。确定积极动机后,具有学术价值的问题可考虑读博,有商业价值的问题可尝试创业,至少有成长价值的问题可从打工开始。 最后,为持续提升自我,可以采用从导师或上级的角度每周总结工作的实用方法。分析未达成目标的原因,如果是懒惰,要直面并解决,比如找学习伙伴相互监督;如果是能力不足,可以考虑转向擅长领域或增加学习时间。 对于您来说,可以结合自身的兴趣和优势,思考在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向。同时,也可以通过打工或参与相关项目积累经验。
2025-02-27
AI与低空经济未来
以下是关于 AI 与未来经济相关的一些信息: AGI 实现后,未来 20 年人类社会可能会发生以下变革: 1. 社会结构变化:劳动力、经济与治理方面,AGI 带来的超高生产率可能挑战现有经济体系基础。传统市场经济建立在稀缺性和劳动力参与之上,而 AGI 可能令充裕成为常态,人工劳动不再是主要创造价值手段,现行的资本主义或社会主义模式都将受到冲击。 2. 经济体系与分配:可能迈向“后稀缺经济”,在 AGI 和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降。例如,未来也许会出现“零工资经济”,人人无需为了生计而工作,AGI 带来的丰富产出能够满足全社会需求。 Sam Altman 对 AI 的相关观点包括: 1. 人类是工具的创造者,每一代人都在前人的发现基础上创造出更强大的工具,AGI 是人类进步脚手架上的又一个工具,也可能是某种开端。未来面临的经济增长看起来令人惊叹,十年后,也许地球上的每个人都能完成的成就将超过今天最具影响力的个人所能达到的水平。 2. 关于 AI 经济学的三点观察: AI 模型的智能水平大致等于用于训练和运行它的资源的对数,花费足够多的资金能获得连续且可预测的收益。 AI 成本每年下降 10 倍,使用门槛正以前所未有的速度降低。 智能增长带来超指数级经济价值,AI 代理人的出现将颠覆知识型工作,经济体系将随之变革。 同时,Sam Altman 强调 AGI 影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变将成为未来最大的挑战。
2025-02-27
未来AI可以给人幸福感吗
未来 AI 有可能给人带来幸福感。在接下来的几十年里,我们将能够做到在祖辈看来如同魔法般的事情。人们的能力随着时间显著提升,如今能完成前人认为不可能的任务,这并非源于基因变化,而是得益于更智能、更强大的社会基础设施。AI 会为人们提供解决难题的工具,帮助我们为人类进步的架构增添新的支撑。例如,我们将很快能与帮助我们完成更多任务的 AI 合作,甚至拥有由不同领域虚拟专家组成的个人 AI 团队,创造几乎任何能想象的事物。孩子们会有能提供个性化教学的虚拟导师,在医疗保健、软件创造等方面也会有更多可能。有了这些新能力,我们能实现前所未有的共同繁荣,让每个人的生活都变得更好。虽然繁荣本身不一定使人快乐,但它会切实改善世界各地人们的生活。同时,也有人坚信,尽可能简单地试用 AI 本身就是让普通人在这场 AI 的发展中受益并获得幸福的最好方式。
2025-02-23
未来5年AI的发展方向
未来 5 年 AI 的发展方向可能包括以下几个方面: 1. 模型发展:从小模型阶段向更强大的模型演进,如 GPT 的出现标志着 AGI 的拐点,Sora 的出现打开了 AGI 的大门,未来可能加大算力和训练,与具身机器人结合,加速智能提升。 2. 能力提升:从能与人类交流到具备对世界力量的感知和与物理世界互动的能力,逐步发展到强人工智能。 3. 应用拓展:在关键领域改变成本结构和提高生产力,如降低医疗、教育等领域的成本,使服务更易获得和负担得起。AI 涉及的领域不断扩大,应用范围更加广泛。 4. 社会影响:可能带来更好的教育、更健康的人口和更有生产力的人,解放人力去解决更重要的问题,创造更美好的社会。但也需要政府和民营企业共同努力,进行人员再培训和能力增强,以应对可能的就业机会变化。 5. 技术突破:如没有编码能力的人独自创建的应用程序或网站走红,OpenAl o1 的开源替代品在推理基准测试中超越它,苹果设备上的研究成果加速个人设备上 AI 的发展等。同时,在一些领域也存在挑战,如对人形机器人的投资水平可能下降,挑战者难以对 NVIDIA 的市场地位造成重大打击等。此外,还可能面临国家安全审查、立法实施等方面的问题。
2025-02-20
AI全称是什么 和传统搜索引擎有什么不同,为什么说AI未来会取代人类
AI 的全称是“Artificial Intelligence”,即人工智能。 AI 搜索引擎与传统搜索引擎的不同主要体现在以下方面: 1. 信息处理方式:AI 搜索引擎能够更高效地处理信息,例如智能摘要功能,可辅助快速筛选信息,实现信息降噪。 2. 信息表达:用自然语言描述就能生成美观可用的图片,降低了创作门槛和周期,使信息表达更简便。 3. 工作流重塑:AI 可以重新构建工作流,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。 4. 协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,协作流程有所差异。 5. 知识传播与管理:正在发生的生成式 AI 革命正在吞噬搜索与社交网络时代的全部数字信息,未来知识可能由机器通过 AI 拥有和管理。 关于“AI 未来会取代人类”这种说法是不准确的。虽然 AI 在某些方面表现出强大的能力,但人类具有独特的创造力、情感、判断力和复杂问题解决能力等,AI 更多是辅助和增强人类的能力,而非完全取代。
2025-02-08