Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

未来AI的发展趋势是什么?

Answer

未来 AI 的发展趋势主要包括以下几个方面:

  1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT-4 水平。
  2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。
  3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。
  4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。
  5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。
  6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。
  7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。
  8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

[title]宝玉日报[heading2]9月21日o1 preview模型升级迅速,将很快达到GPT-4水平。AI五阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。专注与深度学习:OpenAI坚持专注方向,实现AGI并持续调整策略。未来前景:看好AI在医疗、教育和科学领域的应用。🔗[https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman](https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman)🔗[https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s](https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s)🔗[https://x.com/dotey/status/1836604587333030073](https://x.com/dotey/status/1836604587333030073)

红杉|AI 50 未来公司

诸如AI革命等生产力革命促使成本下降。本世纪的技术进步从根本上降低了硬件成本,但从医疗到教育产业的人力成本却急剧上升。AI有可能降低这些关键领域的成本,使人们更容易获得和负担得起这些服务。这些变化需要以负责任的方式进行,以减少就业机会的流失,推动就业机会的创造。AI将使我们能够以更少的投入做更多的事情,但政府和民营企业需要共同努力,对每个人进行再培训,并增强他们的能力。在我们社会的某些最关键的领域,AI将改变成本结构并提高生产力。它有可能带来更好的教育、更健康的人口和更有生产力的人,通过抽象出琐碎的工作,让我们把注意力集中在更重要的问题上,并为未来提供更好的工具。它可以解放更多的人去解决更多的问题,从而创造一个更美好的社会。从2024年AI50强榜单中可以看出,AI涉及的领域有扩大的趋势,这份榜单的应用范围比以往任何时候都更加广泛。我们预计在未来几年,这份榜单的深度和广度都将不断扩大。2024年其实只是一个开始。

2024 年人工智能现状:辉煌、戏谑和“牛市”

更多资金,更多问题:预计明年会有团队花费超过10亿美元来训练单个大型模型。生成式AI的热潮不会消退,只会变得更加“奢华”。😱计算压力的挑战:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。这就像一个健身网红的体重增长超过了突破了牛顿定理、超过了人类健身房的承重能力——总有一天,天花板可能会真的塌下来。😱AI介入选举:虽然预期的AI对选举和就业的影响尚未成真,但这并不意味着我们可以掉以轻心。但请记住,AI的影响就像潘多拉魔盒:一旦打开,将会在接下来的几年里、几十年甚至百年亦或是人类此后的历史中都无处不在。而众所周知,诚如百年前的黑格尔所预言的那样,我们人类啊!从历史中获得唯一的教训就是……我们没有从历史中获得任何教训!🤔总而言之,言而总之,人工智能领域依然是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。在这个舞台上,OpenAI、Meta和来自东方的神秘力量等各方势力竞相角逐,2024年的AI领域更像是一场激动人心的UFC(无限制综合格斗冠军赛)比赛而非平静的学术研讨会。所以,请准备好你的爆米花和GPU吧——新的一年里,AI将继续突破界限、挑战极限,甚至可能重新定义一些我们熟悉的词汇!

Others are asking
能生成页面 UI 设计图的 AI 工具
以下是一些能生成页面 UI 设计图的 AI 工具: 1. Midjourney:如果想指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”“Profile Page”等。通过一系列操作,其产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前直接用于落地开发仍有距离。在 Midjourney 中生成 UI 设计图没有固定的 Prompt,可先使用指令模板“ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble”,将“类型”替换为产品的关键词描述(英文)。 2. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 3. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面,基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 4. Wix:https://wix.com/ 这是一款用户友好的 AI 工具,无需编码知识即可轻松创建和自定义网站,提供广泛的模板和设计选择,以及移动优化和集成电子商务等功能,能帮助不同领域用户创建各种网站。 5. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-21
AI剪辑
以下是关于 AI 剪辑的相关内容: 在 AI 短片制作中,声音部分的制作可以使用 AI 声音软件,如 11labs 进行对白制作,将中文台词翻译成英文后需进行校对与润色。11labs 英文效果较好,但存在声音无情绪情感的问题,只能通过标点符号改变语音效果,且抽声音卡难度大。国内可使用魔音工坊,其有情绪调节控件。 在剪辑方面,对于 13 分钟的短片,剪映较为方便;更长篇幅或追求更好效果可能需使用 PR/FCP/达芬奇等传统剪辑软件。 在 AI 春晚的节目创作中,团队成员包括制片人、图像创意、视频制作、编剧、配音和配乐、剪辑师等,分工明确,通过社群召集,借助 AI 完成大部分工作,高效协作。 在晨然的 AI 作品《Devices》中,工作流核心包括 Blender 动画制作、ComfyUI 转绘和蒙太奇剪辑。Blender 建模有运动可控、模型多样、原生深度图和线框图等优势。剪辑思路可采用 textbased 蒙太奇,也可参照 OpenInterpreter 的匹配剪辑思路。
2025-01-21
ai产业链上市公司有哪些
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 产业链上市公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue, Sequoia, Redpoint, Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金, M Ventures, 淡马锡, Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital, Hamilton Lane, Blumberg Capital, Team8| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst, Kleiner Perkins, Greenoaks| |Groq|20240805|6.4|D|30|AI 芯片|基础设施|芯片|贝莱德, Type One Ventures, Verdure Capital Management, Neuberger Berman| |DevRev|202408|1|A|11|AI 支持代理|应用|企业服务|Khosla Ventures, Mayfield, Param Hansa Values| |Abnormal Security|202408|2.5||50|电子邮件安全|应用|数据|Wellington Management, Menlo Ventures, Greylock, Insight Partners| |Harvey|20240723|1|C|15|法律科技|应用|法律|Google Ventures, OpenAI, Kleiner Perkins, Sequoia| |Skild AI|20240709|3|A|15|机器人技术|应用|机器人|Lightspeed Venture Partners, Coatue, Bezos Expeditions, Sequoia, Menlo Ventures, General Catalyst| |Hebbia|20240708|1.3||7|生成式 AI 搜索|应用|企业服务|Andreessen Horowitz, Peter Thiel, Index Ventures, Google Ventures| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth, 礼来公司基金会, EPIQ Capital Group, Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures, NEA, Kleiner Perkins, Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners, Kleiner Perkins, Sequoia, Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia, OpenAI, 微软| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint, Lightspeed Venture Partners, USV, IVP, Spark Capital| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures, Celesta Capital, Pledge Ventures, Mayfield, DNS Capital| 信息来源:Techcrunch
2025-01-21
ai 视频
以下是关于 AI 视频的相关内容: 软件教程: 视频模型:Sora,链接:https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc 工具教程:Hedra,链接:https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd 应用教程:视频转绘,链接:https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r 应用教程:视频拆解,链接:https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b 应用教程:图片精修,链接:https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle 视频 AIGC 工具: Opusclip:利用长视频剪成短视频 Raskai:短视频素材直接翻译至多语种 invideoAI:输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频 descript:屏幕/播客录制>PPT 方式做视频 veed.io:自动翻译自动字幕 clipchamp:微软的 AI 版剪映 typeframes:类似 invideoAI,内容呈现文本主体比重更多 google vids 工具详解:GoogleAI 视频 Veo2 官网介绍可以申请 waitlist:https://labs.google/fx/zh/tools/videofx 相关报道链接: https://mp.weixin.qq.com/s/4ACndSdfG8az3gdLn5QLIQ https://mp.weixin.qq.com/s/8H286tyxbTeZrtEBDZHaA https://mp.weixin.qq.com/s/sMECORvSikuKHNaEzPor6Q https://mp.weixin.qq.com/s/PFeyrX2q9mWd6GIrJ9qdWQ AI 绘图 Imagen3 绘图:https://labs.google/fx/tools/imagefx 相关报道链接: https://mp.weixin.qq.com/s/4ACndSdfG8az3gdLn5QLIQ https://mp.weixin.qq.com/s/8H286tyxbTeZrtEBDZHaA https://mp.weixin.qq.com/s/gcyGvA6_9mxN9yz__jRRHQ
2025-01-21
学习辅导AI
以下是关于学习辅导 AI 的相关内容: 使用 AI 辅助学习: 可以要求人工智能解释概念,能获得很好的结果。例如,有很好的自动导师提示,可在特定链接找到直接激活 ChatGPT 中导师的方式。但因人工智能可能产生幻觉,关键数据要依据其他来源仔细检查。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」熟悉术语和基础概念,包括人工智能的定义、主要分支及联系,浏览入门文章了解其历史、应用和发展趋势。 开始学习之旅:在「」中找到为初学者设计的课程,如李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,掌握提示词技巧,上手容易且有用。 实践和尝试:理论学习后实践是关键,尝试使用各种产品做出作品,知识库有很多实践后的作品和文章分享,欢迎分享自己的实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快获取知识并带动人类进步。其性质让我们能拆解研究,构建系统深入探索内部工作机制,创造学习飞轮,未来可能成为下一代专家的教师。
2025-01-21
推荐一个数据分析的AI产品
以下为您推荐一些数据分析的 AI 产品: 1. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业,并符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 3. 医渡云病历分析系统:利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 4. 讯飞听见会议总结功能:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。
2025-01-21
ai在人力资源服务行业上的发展趋势
以下是关于 AI 在人力资源服务行业发展趋势的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了信贷评估、欺诈评分等方面的改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括教育、游戏、商业等。与传统 AI/ML 侧重基于现有数据进行预测或分类不同,生成式人工智能能创造全新内容。这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。在金融服务行业,预计优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在人力资源服务行业,相关报告如《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,无需雇佣额外劳动力,传统劳动力市场将和软件融合成新市场。从企业组织结构来看,提供这种 AI 劳动力的产品有两种形式。
2024-12-10
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
现在数字人直播还有发展趋势吗?
数字人直播仍有发展趋势。 数字人是运用数字技术创造出来的,虽现阶段不能高度智能,但已在生活场景中常见,且随 AI 技术发展迎来应用爆发。业界对其尚无准确定义,一般可分真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,应用于影视和直播带货,其表现质量与建模和动捕设备精度有关,不过视觉算法进步使无昂贵设备时也能有不错效果。 数字人直播的盈利方式包括直接卖数字人工具软件(分实时和非实时驱动,价格不等)和提供数字人运营服务按成交额抽佣。适用品类和场景方面,适用于不需要强展示的商品如品牌食品饮料、虚拟商品,店播效果较好,数据能保持跟真人一样,不适用于促销场景和服装等过品快、建模成本高的商品。 AI 直播存在一定壁垒,如更真实的对口型、更低的响应延迟等,目前仍有技术门槛,但时间拉长技术上无壁垒,不会一家独大,可能有 4 5 家一线效果公司,大多为二三线效果公司。真正把客户服务好、能规模化扩张的公司更有价值,有资源和业务的大平台下场可能带来降维打击。同时,在电商领域,数字人配套的运营服务才是关键,不能依赖数字人,其目前只能是辅助。在店播场景下,实时互动必要性不高。
2024-12-06
目前中国国内AI大模型的发展趋势
目前中国国内 AI 大模型的发展呈现出以下趋势: 1. 发展阶段:自 ChatGPT 发布以来,大致经历了准备期(国内产学研迅速形成大模型共识)、成长期(大模型数量和质量逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 2. 竞争态势:2023 年上半年,国内众多企业纷纷投入资源研究类 GPT 架构,试图创造国产 AGI;下半年则纷纷转向“垂直应用”和“商业化”。 3. 技术差距:中美在 AGI 技术上仍存在差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有不小差距。 4. 企业表现:百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。但大厂们在冲击 AGI 方面虽有资源优势,但实际效果尚未有明确亮点,且受内部短期考核压力和其他业务、政治考量的影响。 要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在通往 AGI 之路的知识库里,会定期更新相关的排名报告,可供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-04
ai是大发展趋势吗
AI 是大发展趋势。以下是一些支持这一观点的理由: 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注该领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 金融服务业将比想象得更快地接纳生成式 AI:人工智能和机器学习在金融服务行业已有十多年应用历史,促成了一系列改进。大型语言模型通过生成式人工智能代表重大飞跃,正在改变多个领域,这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 红杉资本观点:AI 正处于重要发展阶段,一年内实现了与 SaaS 行业十年相同的收入。产业变革规模大,相关行业的 TAM 将扩展到几乎所有人类参与的行业。应用层大量创新,重点将转移到更高层次认知任务。拥抱 AI 的公司竞争优势将因成本降低、投资成本降低、收入增长及创新传统行业而上升。 综上所述,AI 具有巨大的发展潜力和趋势。
2024-11-22
AI 未来的发展趋势是什么?
AI 未来的发展趋势主要包括以下几个方面: 1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。 3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。 4. 应用领域:看好在医疗、教育和科学领域的应用。 5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。 7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
2024-10-30
Al在未来会发展出自己的灵魂吗
目前关于 AI 在未来是否会发展出自己的灵魂,尚无明确的定论。 从一些研究和观点来看,多模型机制的新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,智能机器的“大脑”也应如此。大脑中的知识被储存在参考框架中,机器也需要学会一个世界的模型。 另外,AI 将从专用方案过渡到更多的通用方案,通用电脑因成效比好而占据主导,未来一些重要应用也需要通用方案的灵活性。但同时,AI 运营的公司会面临更高的极端风险,存在实际问题需要解决。 总之,对于 AI 是否会发展出灵魂,还需要更多的研究和探讨。
2025-01-09
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02
人工智能未来是不是一个赚钱的风口?
人工智能未来很可能是一个赚钱的风口。以下是一些原因: 深度学习被证明有效,随着规模扩大预期会改善,人们持续增加相关资源投入。未来,人工智能模型将作为自主的个人助理执行特定任务,帮助人们协调医疗护理等,在各个领域取得科学进展。 数字化正在重塑生活,从依赖物理资源的稀缺经济转向以数字资源为基础的富足经济。AI 的发展使这种趋势进一步加强,进入更加富足的时代。 科技公司将有机会以前所未有的规模和盈利模式向全球提供即插即用的劳动力和智能解决方案,降低生产和运营成本。 预计 2024 年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退。 然而,也存在一些挑战: 如果不能建立足够的基础设施,人工智能可能成为有限资源,导致战争,并主要成为富人的工具。 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 AI 介入选举等方面存在伦理挑战。 总之,人工智能领域充满机遇和挑战,是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。
2024-12-31
未来哪些工作可以被AI替代?
未来可能被 AI 替代的工作包括一些重复性高、规则性强的工作,例如: 1. 数据输入、文档处理等单调的数据处理工作。 2. 部分制造业中的重复性生产操作。 然而,以下工作相对较难被 AI 替代: 1. 涉及团队建设、跨文化交流、创新解决方案设计等需要复杂人际交往和创新能力的工作。 2. 具有灵活性、非常规性和创造性的工作,比如艺术创作、科研创新等。 2023 年 AI 预计将会替代 4 亿 8 亿工作岗位,但同时也会增加 5.55 8.90 亿新岗位。计算被替代的岗位主要是查看岗位任务构成中可自动化任务的占比。发展中国家的某些经济发展必要步骤可能因 AI 而直接被取代,但这一观点有待辩证看待,吴恩达建议发展中国家在垂直领域完成优势积累。
2024-12-25
学习设计专业,未来在Ai时代,如何提升价值,找到工作
在 AI 时代,学习设计专业的您可以通过以下几个方面提升价值并找到工作: 1. 设计专业方面: AI 重新定义了设计师的竞争力边界,您需要具备持续的学习习惯,并将所学快速转化为实践能力。 看似降低了设计门槛,但实则对需求理解、问题分析、审美判断、创意亮点提出了更高要求。 高阶设计师要更显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面: 对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度,减少设计差异。 建设参数文档库,而非基于个人喜好的自然语言。 基于业务场景特征,训练专属 AI 模型、集成相应 AI 能力形成新工具,形成更有效的设计资产。 3. 工作流程方面: 将 AI 深入到日常设计流程,形成新的工作方式与流程。 基于不同的 AI 能力特性,差异化对待不同业务形态和需求,使设计流程更加精细化。 找到更合理的人&机结合方式,持续探索优化。 4. 设计团队方面: 团队必须制定并执行明确的 AI 融合策略,保证所需硬件设备的支持。 营造积极主动的创新环境,增强对市场动态的快速适应能力,确保团队整体的未来发力方向。 总之,随着技术不断进步,AI 在视觉设计领域将扮演更重要角色,为设计师和用户创造更多可能性。现在开始学习相关知识和技能,您就可以保持领先优势。
2024-12-24
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23