Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 未来的发展趋势是什么?

Answer

AI 未来的发展趋势主要包括以下几个方面:

  1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT-4 水平。
  2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。
  3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。
  4. 应用领域:看好在医疗、教育和科学领域的应用。
  5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。
  6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。
  7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

[title]宝玉日报[heading2]9月21日o1 preview模型升级迅速,将很快达到GPT-4水平。AI五阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。专注与深度学习:OpenAI坚持专注方向,实现AGI并持续调整策略。未来前景:看好AI在医疗、教育和科学领域的应用。🔗[https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman](https://baoyu.io/translations/transcript/t-mobile-capital-markets-day-2024-sam-altman)🔗[https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s](https://youtube.com/watch?v=r-xmUM5y0LQ&t=3970s)🔗[https://x.com/dotey/status/1836604587333030073](https://x.com/dotey/status/1836604587333030073)

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

为了充分利用这些新机遇,企业需要不断更新和优化其提示词工程策略。例如,我们可以设计如下提示词来探索AI增强决策的潜力:这个高级提示词利用了AI的预测能力,帮助企业制定更具前瞻性和适应性的长期战略。

红杉|AI 50 未来公司

诸如AI革命等生产力革命促使成本下降。本世纪的技术进步从根本上降低了硬件成本,但从医疗到教育产业的人力成本却急剧上升。AI有可能降低这些关键领域的成本,使人们更容易获得和负担得起这些服务。这些变化需要以负责任的方式进行,以减少就业机会的流失,推动就业机会的创造。AI将使我们能够以更少的投入做更多的事情,但政府和民营企业需要共同努力,对每个人进行再培训,并增强他们的能力。在我们社会的某些最关键的领域,AI将改变成本结构并提高生产力。它有可能带来更好的教育、更健康的人口和更有生产力的人,通过抽象出琐碎的工作,让我们把注意力集中在更重要的问题上,并为未来提供更好的工具。它可以解放更多的人去解决更多的问题,从而创造一个更美好的社会。从2024年AI50强榜单中可以看出,AI涉及的领域有扩大的趋势,这份榜单的应用范围比以往任何时候都更加广泛。我们预计在未来几年,这份榜单的深度和广度都将不断扩大。2024年其实只是一个开始。

Others are asking
什么ai好用,目前主流ai有什么特点
目前主流的 AI 工具各有特点和用途: 邮件写作方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站是 https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站是 http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站是 https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站是 https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 大语言模型方面: OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。新的变种使用插件连接到互联网和其他应用程序,Code Interpreter 是一个强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic:发布了 Claude 2,其有一个非常大的上下文窗口,不太可能恶意行事。 对于刚入坑 AI 的学习路径: 第一步是带着好奇心去尝试,记住“生成”两个字。现在大部分人说的 AI 本质上是“生成式人工智能”Generative AI。可以随便找一个国产 AI 聊聊,比如小学奥数题、写演讲稿、对 996 的看法等,看看其擅长和不擅长的地方,有没有能帮助到自己的地方,哪些地方做得不够好。如果条件允许,也可以直接使用 ChatGPT 或者 Claude 处理复杂任务。
2025-01-24
怎么应用ai工具爬取网上热门话题,并生成类似的相关文案,免费的
目前免费使用 AI 工具来爬取网上热门话题并生成类似相关文案的做法存在法律和道德风险,并且大多数正规的 AI 工具也不支持此类功能。网络爬取需要遵守相关法律法规和网站的使用规则,未经授权的爬取可能会导致法律责任。建议您通过合法合规的途径,如利用搜索引擎的热门话题推荐、社交媒体的热门话题板块等方式获取热门话题,并借助 AI 工具的辅助来生成相关文案。
2025-01-24
AI能否给老照片上色?
AI 能够给老照片上色。在最近新上线的 controlnet 模型中,新增的 Recolor 模型可对黑白图片重新上色,适用于修复年代久远的老照片。比如,在给人物照片上色时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应的内容。但上色过程可能存在一些问题,如颜色不精准出现在想要的位置、提示词之间相互污染、照片斑驳痕迹导致背景不统一等。为解决这些问题,可启用 cutoff 插件进行控制。另外,对于像素较低的照片,还可进一步处理使其变得更高清。具体操作可参考相关文章和教程。
2025-01-24
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-24
飞书知识库ai机器人
以下是关于飞书知识库 AI 机器人的相关信息: 简介:在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 aily 搭建的。() 如何使用:在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 功能: 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人的分享:2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 背后的技术:「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 关于“我是谁”:是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 使用方法: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 做问答机器人的原因: 整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。 传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。 作为一个 AI 知识库,需要用更先进的办法来解决:RAG 技术。 在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。
2025-01-24
帮我找一些AI入门文章
以下为您推荐一些 AI 入门文章: 《ChatGPT 中,G、P、T 分别是什么意思?》:GPT 分别代表生成式、预训练和转换器。链接: 标签:ChatGPT 分类:入门 《大白话聊 ChatGPT》:逐字稿: 标签:ChatGPT 分类:入门 《AI 的时代已经到来》:中文译稿: 标签:AI 分类:未来 《万物摩尔定律》:作者:Sam Altman 链接: 标签:AI 分类:未来 《人工智能教父 Hinton:ChatGPT 和 AI 的过去现在与未来》:杰弗里·辛顿(Geoffrey Hinton)被公认是人工智能的教父,全长 40 分钟的采访视频干货满满。链接: 标签:ChatGPT 分类:进阶 必读星标:⭐️ 《揭开 OpenAI 创业秘史,ChatGPT 的真正推手原来是他》 链接: 标签:ChatGPT 分类:进阶 新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 3. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 4. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 5. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 6. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
2025-01-24
ai在人力资源服务行业上的发展趋势
以下是关于 AI 在人力资源服务行业发展趋势的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了信贷评估、欺诈评分等方面的改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括教育、游戏、商业等。与传统 AI/ML 侧重基于现有数据进行预测或分类不同,生成式人工智能能创造全新内容。这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。在金融服务行业,预计优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在人力资源服务行业,相关报告如《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,无需雇佣额外劳动力,传统劳动力市场将和软件融合成新市场。从企业组织结构来看,提供这种 AI 劳动力的产品有两种形式。
2024-12-10
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
现在数字人直播还有发展趋势吗?
数字人直播仍有发展趋势。 数字人是运用数字技术创造出来的,虽现阶段不能高度智能,但已在生活场景中常见,且随 AI 技术发展迎来应用爆发。业界对其尚无准确定义,一般可分真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,应用于影视和直播带货,其表现质量与建模和动捕设备精度有关,不过视觉算法进步使无昂贵设备时也能有不错效果。 数字人直播的盈利方式包括直接卖数字人工具软件(分实时和非实时驱动,价格不等)和提供数字人运营服务按成交额抽佣。适用品类和场景方面,适用于不需要强展示的商品如品牌食品饮料、虚拟商品,店播效果较好,数据能保持跟真人一样,不适用于促销场景和服装等过品快、建模成本高的商品。 AI 直播存在一定壁垒,如更真实的对口型、更低的响应延迟等,目前仍有技术门槛,但时间拉长技术上无壁垒,不会一家独大,可能有 4 5 家一线效果公司,大多为二三线效果公司。真正把客户服务好、能规模化扩张的公司更有价值,有资源和业务的大平台下场可能带来降维打击。同时,在电商领域,数字人配套的运营服务才是关键,不能依赖数字人,其目前只能是辅助。在店播场景下,实时互动必要性不高。
2024-12-06
目前中国国内AI大模型的发展趋势
目前中国国内 AI 大模型的发展呈现出以下趋势: 1. 发展阶段:自 ChatGPT 发布以来,大致经历了准备期(国内产学研迅速形成大模型共识)、成长期(大模型数量和质量逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 2. 竞争态势:2023 年上半年,国内众多企业纷纷投入资源研究类 GPT 架构,试图创造国产 AGI;下半年则纷纷转向“垂直应用”和“商业化”。 3. 技术差距:中美在 AGI 技术上仍存在差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有不小差距。 4. 企业表现:百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。但大厂们在冲击 AGI 方面虽有资源优势,但实际效果尚未有明确亮点,且受内部短期考核压力和其他业务、政治考量的影响。 要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在通往 AGI 之路的知识库里,会定期更新相关的排名报告,可供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-04
ai是大发展趋势吗
AI 是大发展趋势。以下是一些支持这一观点的理由: 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注该领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 金融服务业将比想象得更快地接纳生成式 AI:人工智能和机器学习在金融服务行业已有十多年应用历史,促成了一系列改进。大型语言模型通过生成式人工智能代表重大飞跃,正在改变多个领域,这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 红杉资本观点:AI 正处于重要发展阶段,一年内实现了与 SaaS 行业十年相同的收入。产业变革规模大,相关行业的 TAM 将扩展到几乎所有人类参与的行业。应用层大量创新,重点将转移到更高层次认知任务。拥抱 AI 的公司竞争优势将因成本降低、投资成本降低、收入增长及创新传统行业而上升。 综上所述,AI 具有巨大的发展潜力和趋势。
2024-11-22
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
Al在未来会发展出自己的灵魂吗
目前关于 AI 在未来是否会发展出自己的灵魂,尚无明确的定论。 从一些研究和观点来看,多模型机制的新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,智能机器的“大脑”也应如此。大脑中的知识被储存在参考框架中,机器也需要学会一个世界的模型。 另外,AI 将从专用方案过渡到更多的通用方案,通用电脑因成效比好而占据主导,未来一些重要应用也需要通用方案的灵活性。但同时,AI 运营的公司会面临更高的极端风险,存在实际问题需要解决。 总之,对于 AI 是否会发展出灵魂,还需要更多的研究和探讨。
2025-01-09
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02
人工智能未来是不是一个赚钱的风口?
人工智能未来很可能是一个赚钱的风口。以下是一些原因: 深度学习被证明有效,随着规模扩大预期会改善,人们持续增加相关资源投入。未来,人工智能模型将作为自主的个人助理执行特定任务,帮助人们协调医疗护理等,在各个领域取得科学进展。 数字化正在重塑生活,从依赖物理资源的稀缺经济转向以数字资源为基础的富足经济。AI 的发展使这种趋势进一步加强,进入更加富足的时代。 科技公司将有机会以前所未有的规模和盈利模式向全球提供即插即用的劳动力和智能解决方案,降低生产和运营成本。 预计 2024 年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退。 然而,也存在一些挑战: 如果不能建立足够的基础设施,人工智能可能成为有限资源,导致战争,并主要成为富人的工具。 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 AI 介入选举等方面存在伦理挑战。 总之,人工智能领域充满机遇和挑战,是一个充满惊喜、伦理挑战和很多真金白银的奇妙世界。
2024-12-31
未来哪些工作可以被AI替代?
未来可能被 AI 替代的工作包括一些重复性高、规则性强的工作,例如: 1. 数据输入、文档处理等单调的数据处理工作。 2. 部分制造业中的重复性生产操作。 然而,以下工作相对较难被 AI 替代: 1. 涉及团队建设、跨文化交流、创新解决方案设计等需要复杂人际交往和创新能力的工作。 2. 具有灵活性、非常规性和创造性的工作,比如艺术创作、科研创新等。 2023 年 AI 预计将会替代 4 亿 8 亿工作岗位,但同时也会增加 5.55 8.90 亿新岗位。计算被替代的岗位主要是查看岗位任务构成中可自动化任务的占比。发展中国家的某些经济发展必要步骤可能因 AI 而直接被取代,但这一观点有待辩证看待,吴恩达建议发展中国家在垂直领域完成优势积累。
2024-12-25
学习设计专业,未来在Ai时代,如何提升价值,找到工作
在 AI 时代,学习设计专业的您可以通过以下几个方面提升价值并找到工作: 1. 设计专业方面: AI 重新定义了设计师的竞争力边界,您需要具备持续的学习习惯,并将所学快速转化为实践能力。 看似降低了设计门槛,但实则对需求理解、问题分析、审美判断、创意亮点提出了更高要求。 高阶设计师要更显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面: 对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度,减少设计差异。 建设参数文档库,而非基于个人喜好的自然语言。 基于业务场景特征,训练专属 AI 模型、集成相应 AI 能力形成新工具,形成更有效的设计资产。 3. 工作流程方面: 将 AI 深入到日常设计流程,形成新的工作方式与流程。 基于不同的 AI 能力特性,差异化对待不同业务形态和需求,使设计流程更加精细化。 找到更合理的人&机结合方式,持续探索优化。 4. 设计团队方面: 团队必须制定并执行明确的 AI 融合策略,保证所需硬件设备的支持。 营造积极主动的创新环境,增强对市场动态的快速适应能力,确保团队整体的未来发力方向。 总之,随着技术不断进步,AI 在视觉设计领域将扮演更重要角色,为设计师和用户创造更多可能性。现在开始学习相关知识和技能,您就可以保持领先优势。
2024-12-24
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23