Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

根据数智经济你觉得它的发展是怎样的

Answer

数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。

发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。

总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。

Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】欧盟GDPR原文.pdf

strong enforcement,given the importance of creating the trust that will allow the digital economy to developacross the internal market.Natural persons should have control of their own personal data.Legal and practicalcertainty for natural persons,economic operators and public authorities should be enhanced.

【法律法规】欧盟数据治理法案-英文版.pdf

and daily life.Data is at the centre of that transformation:data-driven innovation will bring enormous benefits toboth Union citizens and the economy,for example by improving and personalising medicine,providing newmobility,and contributing to the communication of the Commission of 11 December 2019 on the European GreenDeal.In order to make the data-driven economy inclusive for all Union citizens,particular attention must be paid toreducing the digital divide,boosting the participation of women in the data economy and fostering cutting-edgeEuropean expertise in the technology sector.The data economy has to be built in a way that enables undertakings,in particular micro,small and medium-sized enterprises(SMEs),as defined in the Annex to CommissionRecommendation 2003/361/EC(3),and start-ups to thrive,ensuring data access neutrality and data portability andinteroperability,and avoiding lock-in effects.In its communication of 19 February 2020 on a European strategy fordata(the ‘European strategy for data’),the Commission described the vision of a common European data space,meaning an internal market for data in which data could be used irrespective of its physical storage location in theUnion in compliance with applicable law,which,inter alia,could be pivotal for the rapid development of artificialintelligence technologies.(1)OJ C 286,16.7.2021,p.38.

【法律法规】欧盟数据治理法案-英文版.pdf

framework for data exchanges and laying down certain basic requirements for data governance,paying specificattention to facilitating cooperation between Member States.This Regulation should aim to develop further theborderless digital internal market and a human-centric,trustworthy and secure data society and economy.Sector-specific Union law can develop,adapt and propose new and complementary elements,depending on thespecificities of the sector,such as the Union law envisaged on the European health data space and on access tovehicle data.Moreover,certain sectors of the economy are already regulated by sector-specific Union law,whichincludes rules relating to the sharing of or access to data across borders or across the Union,for exampleDirective 2011/24/EU of the European Parliament and of the Council(4)in the context of the European health dataspace,and relevant legislative acts in the field of transport,such as Regulations(EU)2019/1239(5)and(EU)2020/1056(6)and Directive 2010/40/EU(7)of the European Parliament and of the Council in the context ofthe European mobility data space.

Others are asking
如何建设数智化车间
建设数智化车间可以参考以下步骤和要点: 前期工作: 进行行业资料收集,不同赛道的官方提供资料内容丰富程度有所差异,如智能座舱赛道>营销赛道>售后赛道。 研判 COZE 的插件生态对不同赛道的支持情况。 赛道研判: 竞争强度方面,营销赛道>智能座舱赛道>售后赛道。 考虑插件生态的支持,如执行项插件等。 关注官方资料的支撑情况,如强前段营销。 注意行业专业性限制,如非汽车行业(汽修相关)。 市场调研: 线下前往领克 4S 门店索取销售资料。 通过懂车帝等网络渠道进行关键词热搜。 与车主交流购车、养车、用车经验。 专家调研: 利用人脉资源,如队长罗文引荐汽车超人、途虎工厂店的行业专家。 结论: 售后智能体搭建需要大量数据支撑。 当前售后门店有成熟的 SaaS 系统,包括工单记录、派单、零配件库存管理、故障分析、账单结算等,非行业人士在售后方面较难找到突破口。 此外,火山引擎 AI 创造者大赛中也有相关赛道说明,如汽车品牌的 AI 座舱赛道、AI 营销赛道、AI 售后赛道,各赛道有不同的赛题说明和核心目标。例如,AI 座舱赛道需利用相关模型和插件开发满足车主定制化需求的智能体;AI 营销赛道要开发创新的智能体方案提升营销效果;AI 售后赛道要提供提升售后服务效率与用户体验的智能体应用。 黄仁勋在 AI 界超级碗 GTC2024 的主旨演讲中提到了一些关于人工智能在复杂工业空间中的应用示例,如机器人大楼中的自治系统相互交互,仓库监控和调整行为等,虽然并非直接针对数智化车间建设,但其中的理念和技术可能具有一定的参考价值。
2025-02-25
换几个说法依托校企合作,深化产学研合作,推动数智中医普适性应用
以下是为您提供的几种说法: 1. 凭借校企合作,强化产学研合作,促进数智中医的普适性应用。 2. 以校企合作为依托,加深产学研合作,推进数智中医普适性应用。 3. 依靠校企合作,深化产学研合作进程,助力数智中医普适性应用。
2024-12-18
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当今时代具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了全新的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从检测到管理的各个环节,全面提升了服务的质量和效率。 在检测方面,借助先进的技术手段,可以更精准地获取患者的身体状况信息,为后续的诊断提供更可靠的数据支持。诊断环节则因数智技术的融入而更加准确和高效,能够快速识别病症的根源。治疗过程中,数智技术能够辅助医生制定更个性化、更科学的治疗方案,提高治疗效果。 评价环节也得以创新,能够更全面、客观地评估治疗效果和患者的康复情况。而在管理方面,数智技术有助于实现对医疗资源的合理调配和高效管理,提高整个医疗服务体系的运行效率。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个良性循环,不断提升服务水平和质量。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。通过国际合作,可以吸收借鉴其他国家的先进经验和技术,进一步完善数智中医体系。这将有助于提升我国中医药在国际上的影响力,为全球健康事业贡献中国智慧和力量。 重庆作为一个具有发展潜力的地区,有望借助数智中医的发展,成为这一领域的新高地,引领行业的发展潮流,为当地乃至全国的中医药事业注入新的活力。
2024-08-12
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当前的时代背景下具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了前所未有的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从患者的检测环节,利用先进的设备和算法,更精准地获取身体状况的信息;到诊断环节,借助大数据分析和人工智能的辅助,提高诊断的准确性和效率;再到治疗环节,依据患者的个体差异制定个性化的治疗方案;以及评价环节,通过科学的指标和数据分析,客观评估治疗效果;最后到管理环节,实现对医疗资源的合理调配和患者的全程跟踪管理。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个完整、高效的医疗服务体系,为患者提供更优质的医疗体验。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。加强国际合作,可以引入国外的先进技术和理念,同时也能将我国的中医药文化和数智中医成果推广出去。这不仅有助于提升我国在中医药领域的国际影响力,还能为全球医疗健康事业贡献中国智慧和中国方案。 重庆作为一个具有发展潜力的城市,有望借助数智中医的发展契机,成为数智中医发展的新高地。通过政策支持、人才培养、技术创新等多方面的努力,重庆能够在数智中医领域取得显著成就,为中医药事业的繁荣发展注入新的活力。
2024-08-12
你觉得谷歌浏览器中的免费AI有哪些
谷歌浏览器中的免费 AI 功能包括: 1. 智能组织标签页。 2. 借助文本生成图像模型生成个性化壁纸图片。 3. 写作辅助。 4. 免费 AI 编程助手 Gemini Code Assist 发布,每月免费提供 180,000 次代码补全,支持 Python、Java、Go、Rust 等全部语言,具备强大代码审查和智能聊天助手功能,兼容 VS Code 与 JetBrains IDE,拥有 128k 超长上下文窗口,能精准理解大型本地代码库。
2025-03-01
你觉得谷歌浏览器中的免费网页AI有哪些
以下是谷歌浏览器中一些常见的免费网页 AI 相关信息: 大语言模型方面: OpenAI 有 3.5 和 4 两个主要模型。3.5 模型于 11 月启动了当前的 AI 热潮,4.0 模型在春季首次发布,功能更强大。新的变种使用插件可连接到互联网和其他应用程序。Code Interpreter 是一个强大的 ChatGPT 版本,能运行 Python 程序。若未为 OpenAI 付费,只能使用 3.5 模型。除插件变种和暂时停用的带有浏览功能的 GPT4 版本外,这些模型未连接到互联网。 微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如能创建和查看图像,且能在网页浏览器中阅读文档,并连接到互联网。 谷歌一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic 发布了 Claude 2,其特点是有非常大的上下文窗口。 PDF 翻译方面: DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-01
你觉得小白从现在开始怎么学AI
对于小白如何学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,有机会还可获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品和文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下经验: 像《谁是人类》活动中的元子语一样,从 prompt 入手。3.5 刚出来时,对 AI 生成原理的理解加上写好 prompt,能提高问问题和解决问题的效率。 参考《雪梅 May 的 AI 学习日记》,学习模式可以是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习时间不必每天依次进行,有空时学习即可。学习状态很重要,保持良好状态能更好地学进去。学习资源多为免费开源。 总之,学习 AI 需要花费时间和精力,愿意做一些准备,坚持学习和实践。
2025-02-11
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
你觉得首尾帧的使用场景有哪些
以下是首尾帧的一些使用场景: 1. 在即梦 AI 视频生成的【图生视频】面板内,勾选【使用尾帧】可开启「首尾帧」功能。此功能基于用户输入的「首帧图片」、「尾帧图片」以及 prompt(强烈建议填写),生成完整的过渡效果。 2. 「首尾帧」能通过用户输入的「首帧」和「尾帧」图片,更好地保持主体的一致性。「首帧」是视频的第一帧,即开头的图片;「尾帧」是视频的最后一帧,即结尾的图片。 3. 输入 prompt 会极大程度增加过渡效果自然成功率,不输入 prompt 有一定概率会给到叠化过渡效果。 4. 运动速度可以根据图片差异进行调整,如景别或内容差异较大,可选择【适中】速度进行生成。 5. 选择的生成时长可以根据图片差异进行调整,如景别或内容差异较大,可选择更高时长进行生成。例如,可根据首尾帧的过渡时长预期,选择 3s 12s 的时长。 6. 线稿上色的动态视频可以使用即梦视频 1.2 模型的首尾帧功能,能让图片不乱动。 7. 把两段素材(如一个动作到另一个动作的素材)拼接起来时,也可能用到首尾帧。
2025-01-22
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16
适合普通人(没有ai开发经验) 的ai发展方向有哪些
对于没有 AI 开发经验的普通人,以下是一些适合的 AI 发展方向: 1. 基础知识学习: 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 掌握数学基础,如统计学(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 2. 算法和模型: 熟悉监督学习(如线性回归、决策树、支持向量机)。 了解无监督学习(如聚类、降维)。 知晓强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络、循环神经网络。 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 巩固数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 涉足自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等领域。 5. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 6. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 此外,无论您是技术爱好者还是内容创作者,都可以: 技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试使用 AI 辅助编码。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor 等。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用。 内容创作者: 1. 利用 AI 辅助头脑风暴,获取创意方向。 2. 建立 AI 写作流程,从生成大纲到扩展段落等。 3. 探索多语言内容,借助 AI 辅助翻译和本地化。 4. 用 AI 工具优化 SEO,调整标题、元描述和关键词使用。
2025-03-02
对于物联网的智能台灯设计,你给我写一下国内外的发展现状,但不能完全抄袭,查重率百分之十
目前,在国内外物联网智能台灯的发展呈现出以下现状: 国内方面,随着物联网技术的迅速发展,智能台灯的市场逐渐扩大。许多企业纷纷投入研发,注重产品的智能化功能,如通过手机 APP 实现远程控制、亮度和色温调节等。同时,一些产品还融入了语音控制功能,提升了用户的使用体验。然而,在产品的稳定性和兼容性方面,仍存在一定的改进空间。 国外方面,智能台灯的设计更加注重人性化和创新性。例如,一些产品在外观设计上更加时尚美观,能够与不同的家居风格相融合。在技术应用上,国外的智能台灯更加注重与其他智能家居设备的互联互通,形成完整的智能家居生态系统。但部分产品价格较高,限制了其在大众市场的普及程度。
2025-02-28
AI发展史
AI(人工智能)的发展历程如下: 1. 起源阶段(1943年):心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950年:计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956年:在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并作为一门学科确立下来。 此后近70年,AI的发展起起落落。 AI技术发展历程还包括: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前AI前沿技术点有: 1. 大模型:如GPT、PaLM等。 2. 多模态AI:视觉语言模型如CLIP、Stable Diffusion,以及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子AI:量子机器学习、量子神经网络等。 8. AI芯片和硬件加速。
2025-02-26
大模型的发展
大模型的发展历程如下: 2017 年发布的 Attention Is All You Need 论文是起源。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),其创新性地采用双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)以更好地推断语义信息,开创了预训练语言表示范式,参数规模在 110M 到 340M。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号,展示了通过无监督大规模预训练获得的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模在十亿到千亿。 2023 年度中文大模型基准测评报告中,优秀模型案例包括: 2022 年 12 月的字节云雀大模型,闭源,通用大模型。 百川 Baichuan、Yi34B 等开源模型,涵盖医疗、汽车、教育等行业。 过去半年国内外代表性模型的发展趋势为:国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,每个月都有稳定且巨大的提升,到 11 月份测评时已经完成总分上对 GPT3.5 的超越。 随着大模型技术愈发成熟、规模增大,为 AI Agent 提供强大能力,Agent + 大模型有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
2025-02-25
大模型的发展历史
大模型的发展历史如下: 2017 年,发布了 Attention Is All You Need 论文,开启了大模型发展的序幕。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),通过双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模在十亿到千亿之间。 2023 年是大模型澎湃发展的一年,从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,到 23 年末多模态大模型的全面爆发,再到刚刚面世的 Sora 再次震惊世界。随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
2025-02-24
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
AI与低空经济未来
以下是关于 AI 与未来经济相关的一些信息: AGI 实现后,未来 20 年人类社会可能会发生以下变革: 1. 社会结构变化:劳动力、经济与治理方面,AGI 带来的超高生产率可能挑战现有经济体系基础。传统市场经济建立在稀缺性和劳动力参与之上,而 AGI 可能令充裕成为常态,人工劳动不再是主要创造价值手段,现行的资本主义或社会主义模式都将受到冲击。 2. 经济体系与分配:可能迈向“后稀缺经济”,在 AGI 和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降。例如,未来也许会出现“零工资经济”,人人无需为了生计而工作,AGI 带来的丰富产出能够满足全社会需求。 Sam Altman 对 AI 的相关观点包括: 1. 人类是工具的创造者,每一代人都在前人的发现基础上创造出更强大的工具,AGI 是人类进步脚手架上的又一个工具,也可能是某种开端。未来面临的经济增长看起来令人惊叹,十年后,也许地球上的每个人都能完成的成就将超过今天最具影响力的个人所能达到的水平。 2. 关于 AI 经济学的三点观察: AI 模型的智能水平大致等于用于训练和运行它的资源的对数,花费足够多的资金能获得连续且可预测的收益。 AI 成本每年下降 10 倍,使用门槛正以前所未有的速度降低。 智能增长带来超指数级经济价值,AI 代理人的出现将颠覆知识型工作,经济体系将随之变革。 同时,Sam Altman 强调 AGI 影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变将成为未来最大的挑战。
2025-02-27
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
推荐科研人专用AI(经济学)
以下是为科研人(经济学)推荐的一些 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,能简化您的学术工作。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 这些工具可以帮助您从不同的角度审视和改进您的课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-04
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
地方国民经济和社会发展规划、产业规划编制的Ai工具
以下是一些可以用于地方国民经济和社会发展规划、产业规划编制的 AI 工具: 在绘制逻辑视图、功能视图、部署视图方面: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 在审核规划平面图方面: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-10
完善数字经济的发展路径
以下是关于完善数字经济发展路径的相关内容: 在过去的十年中,数字技术已经改变了经济和社会,影响了所有活动领域和日常生活。数据处于这种转变的中心,数据驱动的创新将为联盟公民和经济带来巨大利益,例如改善和个性化医疗、提供新的移动性,并有助于 2019 年 12 月 11 日委员会关于欧洲绿色协议的沟通。为了使数据驱动的经济对所有联盟公民具有包容性,必须特别关注减少数字鸿沟,促进妇女参与数据经济,并培养技术领域的前沿欧洲专业知识。数据经济的构建方式应使企业,特别是委员会建议 2003/361/EC 中定义的微型、小型和中型企业(SMEs)以及初创企业能够蓬勃发展,确保数据访问的中立性、数据的可移植性和互操作性,并避免锁定效应。在 2020 年 2 月 19 日关于欧洲数据战略(“欧洲数据战略”)的沟通中,委员会描述了一个共同的欧洲数据空间的愿景,即一个内部数据市场,在符合适用法律的情况下,数据可以不受其在联盟中的物理存储位置的影响而被使用,这尤其可能对人工智能技术的快速发展至关重要。 数据是数字经济的核心组成部分,也是确保绿色和数字转型的重要资源。近年来,人类和机器生成的数据量呈指数级增长。然而,大多数数据未被使用,或者其价值集中在相对较少的大型公司手中。低信任度、相互冲突的经济激励和技术障碍阻碍了数据驱动创新潜力的充分实现。因此,通过为数据的再利用提供机会,并消除符合欧洲规则和充分尊重欧洲价值观的欧洲数据经济发展的障碍,以及按照减少数字鸿沟的使命,使每个人都受益,从而释放这种潜力至关重要。 这些发展需要在联盟中建立一个强大且更一致的数据保护框架,并得到强有力的执行,鉴于建立信任对于数字经济在整个内部市场发展的重要性。自然人应该对自己的个人数据有控制权。应加强自然人、经济运营商和公共当局的法律和实际确定性。
2024-11-19