直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能发展历史

回答

人工智能的发展历史如下:

  • 起源阶段:
    • 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。
    • 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。
    • 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。
  • 发展历程:
    • 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。
    • 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。
    • 早期阶段(1950s - 1960s):有专家系统、博弈论、机器学习初步理论。
    • 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
    • 统计学习时期(1990s - 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。
    • 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。
  • 前沿技术点:
    • 大模型:如 GPT、PaLM 等。
    • 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
    • 自监督学习:自监督预训练、对比学习、掩码语言模型等。
    • 小样本学习:元学习、一次学习、提示学习等。
    • 可解释 AI:模型可解释性、因果推理、符号推理等。
    • 机器人学:强化学习、运动规划、人机交互等。
    • 量子 AI:量子机器学习、量子神经网络等。
    • AI 芯片和硬件加速。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

[title]人工智能简介和历史[heading1]人工智能简史人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

走入AI的世界

[title]走入AI的世界[heading2]1智能起源:极简AI发展史和生成式AI的革命性突破2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

其他人在问
怎么学习人工智能并应用到赚钱
学习人工智能并应用到赚钱可以从以下几个方面入手: 1. 掌握基础知识:学习人工智能的基本概念、原理和技术,包括机器学习、深度学习、自然语言处理等。 2. 提升技能:通过相关课程和实践,提高自己在数据处理、模型训练和优化等方面的能力。 3. 学习商业应用:了解人工智能在金融、医疗、制造业等行业的应用案例,例如学习微软的《面向商业用户的人工智能学习》《人工智能商学院》等课程。 4. 深入研究经典机器学习:可参考《机器学习入门课程》。 5. 掌握特定技术:如使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,包括《视觉》《自然语言处理》《使用 Azure OpenAI 服务的生成式人工智能》等课程。 6. 持续学习和实践:人工智能领域发展迅速,需要不断更新知识和技能,并将其应用到实际项目中。 然而,需要注意的是,学了人工智能有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等,但能否赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出。大型语言模型主要基于语言理解和生成,并非专门设计用于数学计算,在处理数学问题时可能出错。同时,关于 GPTs/GLMs 能否帮助创作者赚钱,答案是能,但大多数人不能,具体原因会在相关文章中详细阐述。
2024-10-30
人工智能的核心技术是什么
人工智能的核心技术主要包括以下几个方面: 1. 架构:当前市场上许多令人惊叹的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的基石。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大的支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及其收购的英国公司 DeepMind 培养了一批杰出的领军人物,这些人才的流动和合作推动了 AI 技术的快速进步。 此外,人工智能的“智能”特质体现在以下几个方面: 1. 定义和特点:涵盖了机器的学习、推理、适应和自我改进的能力,表现为能从经验中学习、理解复杂概念、处理和分析大量数据以及执行复杂任务,具有算法驱动的决策过程、对大数据的处理能力以及在特定任务中的高效性和准确性等关键特点。 2. 行为模式: 信息处理:通过先进的算法和计算模型处理信息,从大量数据输入中学习规律、做出预测并决策。 环境互动:能够适应操作环境,在特定环境中高效工作并对新情况做出适应。 能量聚焦:执行设计任务时展现出极高效率,持续工作不受疲劳影响。 深度与专注:采用深度学习技术的 AI 系统能对特定领域数据进行深入分析,识别复杂模式和关系。
2024-10-29
基于三本认识人工智能的教材,做教材分析,为我写一个引言,从课程标准和背景等方面来写,字数尽量多。
以下是为您生成的基于三本认识人工智能教材的教材分析引言: 在当今科技飞速发展的时代,人工智能已成为引领社会变革的重要力量。课程标准对于培养具备人工智能素养的人才提出了明确要求,旨在使学习者能够深入理解人工智能的原理、应用和发展趋势。 这三本教材为我们探索人工智能的奥秘提供了坚实的基础。首先,《认知神经学科:关于心智的生物学》由 Michael S. Gazzaniga、Richard B. Lvry 和 George R. Mangun 所著,作为世界权威的认知神经科学教材,它系统地涵盖了认知神经科学的各个方面,包括发展历史、细胞机制与认知、神经解剖与发展、研究方法,以及感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。通过这本书,我们能够从生物学的角度深入理解心智的形成和运作机制,为理解人工智能中的认知模型提供了生物学基础。 其次,《神经科学原理》由 Eric R. Kandel 和 James H. Schwartz 编写,让我们系统地了解神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。它强调了神经网络的联结主义,让我们认识到知识并非孤立存在,而是相互关联的,这对于构建人工智能中的知识表示和推理模型具有重要的启示。 最后,《神经生物学:从神经元到脑》由 John G. Nicholls 等著,是神经生物学领域内的世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物学的基本概念、神经系统的功能及细胞和分子机制。将这本书与前两本结合起来阅读,能够更全面地理解人脑的构造和运作,为设计更智能、更接近人类思维的人工智能系统提供宝贵的思路。 综上所述,这三本教材从不同角度为我们揭示了神经科学与人工智能之间的紧密联系,为我们深入学习和研究人工智能提供了丰富的知识和深刻的见解。
2024-10-29
人工智能视阈下高校设计学科教学 改革的新路径研究
以下是为您整合的相关内容: 在高校设计学科教学改革方面,相关法案提到了对人工智能领域的支持,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能方法和系统方面的学习,并培养相关领域专家的跨学科视角和合作。同时,在高等教育中,有人认为大型语言模型(LLMs)可能会对其产生显著的积极影响,特别是提升人文学科的重要性。LLMs 具有深度且内在的文本属性,与大学人文学科课程所强调的技能和方法直接相关。此外,还有法案涉及推动机器学习的发展,支持跨多个机构和组织的人工智能及相关学科的跨学科研究和开发。
2024-10-28
系统学习人工智能的路径
系统学习人工智能的路径如下: 1. 加入“通往 AGI 之路”社区:这是一个致力于人工智能学习的中文知识库和社区平台,由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等,还会定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 从编程语言入手:可以选择 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 3. 尝试使用 AI 工具和平台:例如使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 5. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 6. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,全面系统地学习 AI 知识和技能,可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,为未来在 AI 领域的发展做好准备。
2024-10-28
新手怎么学习人工智能
对于新手学习人工智能,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-10-28
能否介绍一下ai的历史
人工智能(Artificial Intelligence)的历史源远流长。 早在 19 世纪,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,正式提出“人工智能”一词,并确立其为一门学科。 此后近 70 年,AI 的发展起伏不定,曾两次引发人类对其毁灭世界的恐慌,热度时高时低。 在发展过程中,对于一些任务,如根据照片判断一个人的年龄,由于无法明确解法,无法编写明确程序让计算机完成,这类任务正是 AI 所关注的。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-10-27
AI的发展历史
AI 的发展历史如下: 起源追溯到上世纪 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,经历了多次起伏。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 最初符号推理流行,后因应用拓展困难出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被用作“神经网络”的同义词。
2024-10-25
AI的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因从专家提取知识并以计算机可读形式表现的复杂性和高成本,在很多情况下不适用,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 AI 技术的发展历程可概括为: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion 及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 最初,查尔斯·巴贝奇发明计算机,用于按明确程序运算数字。现代计算机虽先进,但仍遵循相同受控计算理念。但有些任务如“根据照片判断一个人的年龄”无法明确编程,因不知具体步骤,这类任务正是 AI 感兴趣的。
2024-10-10
AI的概念以及发展历史
人工智能(Artificial Intelligence,简称 AI)是一门研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情的科学。 AI 的发展历史始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因无法实现应用场景大规模拓展,且从专家提取知识并用计算机可读形式表现并保持准确性的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”一词常被用作“神经网络”的同义词,因为多数成功案例基于神经网络方法。 例如在创建国际象棋计算机对弈程序时,方法不断变化。最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机虽更先进但仍遵循相同理念。但像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不知大脑完成此任务的具体步骤,而这类任务正是 AI 感兴趣的。
2024-09-29
agi的历史
AGI 的历史如下: 在 1990 年代末至 2000 年代,越来越多的人呼吁开发更普适的 AI 系统,该领域的学者试图确定可能构成更普遍智能系统的原则,“通用人工智能”(AGI)这一名词在 2000 年代初流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求,回应了早期 AI 研究的长期抱负和梦想。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,应关注 AGI 能完成什么,而不是它如何完成任务。 到 2024 年,出现了一些与 AGI 相关的情况,如全真 AI 虚拟人成熟、AR/VR 技术大规模商用、接近 AGI 的技术出现、人与 AI 配合的工作方式成为常态、AI 生产的数据量超过全人类生产数据量、“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉、AI 引发的社会问题开始加重,结构性失业开始出现、AGI 对于地缘政治的影响开始显露等。
2024-09-13
AI的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因从专家提取知识并以计算机可读形式表现的复杂性和高成本,在很多情况下不适用,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 AI 技术发展历程如下: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):有深度神经网络、卷积神经网络、循环神经网络等。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循相同受控计算理念。有些任务如根据照片判断人的年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务正是 AI 感兴趣的。
2024-08-30
中国的AI发展到什么程度了?
目前中国的 AI 发展呈现出强势崛起的态势。中国的模型在面对制裁时展现出坚韧和战略智慧,在一些方面取得了显著成果: 达到或超过了 GPT4 水平。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。 模型凭借自身优势正在“屠榜”,证明在 AI 领域仍占据重要地位。 同时,AI 在中国的发展也带来了一些新的现象和挑战,如 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。
2024-10-31
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
AI 未来的发展趋势是什么?
AI 未来的发展趋势主要包括以下几个方面: 1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。 3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。 4. 应用领域:看好在医疗、教育和科学领域的应用。 5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。 7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
2024-10-30
根据数智经济你觉得它的发展是怎样的
数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。 发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。 总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。
2024-10-29
根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容
数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。 银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。 低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。 单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。
2024-10-29
AGI发展现状
AGI(通用人工智能)的发展现状如下: OpenAI 自 2015 年成立以来,一直将 AGI 作为战略目标之一,随着技术发展,如 ChatGPT、多模态大模型和 AI Agent 等,我们似乎越来越接近这一目标。 AGI 有五个发展等级: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 AlphaGeometry 结合神经语言模型的预测功能和基于规则的推理引擎找出解决方案,并采用生成大量合成训练数据的方法解决数据短缺问题。 Sam 表示通用人工智能(AGI)的发展指日可待,但它对世界的影响可能比预期小。OpenAI 正在与美国军方合作开发开源网络安全软件,努力预防退伍军人自杀,且开发武器和有害工具不被允许。 2024 年内 AGI 的机会点包括:图片超短视频的精细操控;有一定操控能力的生成式短视频;AI 音频能力长足进展;“全真 AI 颜值网红”出现;游戏 AI NPC 有里程碑式进展;AI 男/女朋友聊天基本成熟;实时生成的内容开始在社交媒体内容、广告中出现;AI Agent 有明确进展;AI 的商业模式开始有明确用例;可穿戴全天候 AI 硬件层出不穷;中国 AI 达到或超过 GPT4 水平,美国出现 GPT5,世界上开始现“主权 AI”;华为昇腾生态开始形成,国内推理芯片开始国产替代;AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野并引发担忧;AI 立法、伦理讨论仍大规模落后于技术进展。 2025 2027 年的发展预测包括:AI 3D 技术、物理规则成熟;全真 AI 虚拟人成熟;AR/VR 技术大规模商用;接近 AGI 的技术出现;人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行;AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源;具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破;“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉;AI 引发的社会问题开始加重,结构性失业开始出现;AGI 对于地缘政治的影响开始显露。
2024-10-29