Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

根据数智经济、银发经济、低空经济、单身经济其中有什么痛点和创新发展内容

Answer

数智经济的痛点可能包括数据安全与隐私保护问题、数字鸿沟导致的发展不平衡、技术更新换代快带来的高投入成本等。创新发展方面,可以加强数据治理和安全防护技术,推动数字技术与传统产业深度融合,拓展数字经济新场景。

银发经济的痛点或许有产品和服务针对性不足、市场标准和规范不完善、养老服务专业人才短缺等。创新发展可着眼于开发个性化的老年产品和服务,建立健全行业标准,加强养老服务人才培养。

低空经济的痛点可能存在政策法规不完善、基础设施建设不足、技术创新能力有待提高等。创新发展可以从完善政策法规、加大基础设施投资、推动技术研发和应用等方面入手。

单身经济的痛点也许是消费市场细分不够精准、社交需求满足不足、部分产品和服务质量参差不齐等。创新发展能够在精准定位消费需求、创新社交模式、提升产品和服务品质上下功夫。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
AI与低空经济未来
以下是关于 AI 与未来经济相关的一些信息: AGI 实现后,未来 20 年人类社会可能会发生以下变革: 1. 社会结构变化:劳动力、经济与治理方面,AGI 带来的超高生产率可能挑战现有经济体系基础。传统市场经济建立在稀缺性和劳动力参与之上,而 AGI 可能令充裕成为常态,人工劳动不再是主要创造价值手段,现行的资本主义或社会主义模式都将受到冲击。 2. 经济体系与分配:可能迈向“后稀缺经济”,在 AGI 和自动化极大降低生产成本后,许多商品和服务近乎免费,人类基本需求容易满足,金钱和竞争在某些领域的重要性下降。例如,未来也许会出现“零工资经济”,人人无需为了生计而工作,AGI 带来的丰富产出能够满足全社会需求。 Sam Altman 对 AI 的相关观点包括: 1. 人类是工具的创造者,每一代人都在前人的发现基础上创造出更强大的工具,AGI 是人类进步脚手架上的又一个工具,也可能是某种开端。未来面临的经济增长看起来令人惊叹,十年后,也许地球上的每个人都能完成的成就将超过今天最具影响力的个人所能达到的水平。 2. 关于 AI 经济学的三点观察: AI 模型的智能水平大致等于用于训练和运行它的资源的对数,花费足够多的资金能获得连续且可预测的收益。 AI 成本每年下降 10 倍,使用门槛正以前所未有的速度降低。 智能增长带来超指数级经济价值,AI 代理人的出现将颠覆知识型工作,经济体系将随之变革。 同时,Sam Altman 强调 AGI 影响力的扩散将不均衡,科学研究可能成为最先受益的领域,而社会如何适应这种转变将成为未来最大的挑战。
2025-02-27
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
推荐科研人专用AI(经济学)
以下是为科研人(经济学)推荐的一些 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,能简化您的学术工作。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 这些工具可以帮助您从不同的角度审视和改进您的课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-04
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
地方国民经济和社会发展规划、产业规划编制的Ai工具
以下是一些可以用于地方国民经济和社会发展规划、产业规划编制的 AI 工具: 在绘制逻辑视图、功能视图、部署视图方面: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 在审核规划平面图方面: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-10
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
我是做跨境电商的,我想通过AI调研竞品的产品卖点和痛点,编写自己产品的文案,做产品图片和视频,请问可以用哪些工具,如何学习
如果你想通过 AI 调研竞品的产品卖点和痛点,编写自己产品的文案,制作产品图片和视频,以下是一些工具和学习资源供你参考: 1. AI 调研工具:你可以使用一些 AI 工具来分析竞品的产品卖点和痛点。例如,使用 AI 分析工具来研究市场趋势、消费者行为和竞争对手情况。这些工具可以帮助你快速识别出哪些产品受欢迎、价格区间、销量等关键信息。 2. AI 文案工具:AI 文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。你可以使用这些工具来生成产品文案,或者对已有的文案进行优化和改进。 3. AI 设计工具:AI 设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。这些工具可以帮助你快速设计出符合用户需求的产品页面,提高用户体验和转化率。 4. AI 图像识别和优化工具:AI 图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。你可以使用这些工具来优化产品图片,提高图片的质量和吸引力。 5. AI 视频制作工具:你可以使用 AI 视频制作工具来制作产品视频。这些工具可以帮助你快速生成视频内容,或者对已有的视频进行优化和改进。 6. 学习资源:你可以通过在线课程、教程、视频等学习资源来学习如何使用 AI 工具和技术。这些资源可以帮助你了解 AI 的基本原理和应用场景,掌握使用 AI 工具和技术的技能和方法。 总之,使用 AI 工具和技术可以帮助你更好地调研竞品的产品卖点和痛点,编写自己产品的文案,制作产品图片和视频。你可以根据自己的需求和实际情况选择合适的工具和学习资源,提高工作效率和质量。
2024-05-09
你觉得大模型标注的痛点是什么?
大模型在标注数据方面存在以下几个主要痛点: 1. 缺乏高质量的训练数据 相比英文数据,中文开源高质量数据较少,特别是通用领域的百科、问答、学术等数据 专业数据服务行业还处于起步阶段,可用于训练的经过加工、清洗、标注的高质量数据集较为匮乏 2. 数据标注人才短缺 能够进行专业数据标注的人才并不多,这成为制约大模型训练的瓶颈之一 企业需要与高校、研究机构等合作,共同解决数据标注人才的缺乏问题 3. 数据隐私和安全问题 由于训练数据的敏感性,企业往往只愿意将大模型的训练数据保留在本地,这与需要借助云端算力的矛盾 需要在数据隐私保护和算力需求之间寻求平衡 总的来说,高质量训练数据的获取、专业数据标注人才的培养,以及数据隐私安全的平衡,都是当前大模型在标注数据方面面临的主要挑战。这些问题需要产学研各方通力合作,共同解决。
2024-04-19
如何建设数智化车间
建设数智化车间可以参考以下步骤和要点: 前期工作: 进行行业资料收集,不同赛道的官方提供资料内容丰富程度有所差异,如智能座舱赛道>营销赛道>售后赛道。 研判 COZE 的插件生态对不同赛道的支持情况。 赛道研判: 竞争强度方面,营销赛道>智能座舱赛道>售后赛道。 考虑插件生态的支持,如执行项插件等。 关注官方资料的支撑情况,如强前段营销。 注意行业专业性限制,如非汽车行业(汽修相关)。 市场调研: 线下前往领克 4S 门店索取销售资料。 通过懂车帝等网络渠道进行关键词热搜。 与车主交流购车、养车、用车经验。 专家调研: 利用人脉资源,如队长罗文引荐汽车超人、途虎工厂店的行业专家。 结论: 售后智能体搭建需要大量数据支撑。 当前售后门店有成熟的 SaaS 系统,包括工单记录、派单、零配件库存管理、故障分析、账单结算等,非行业人士在售后方面较难找到突破口。 此外,火山引擎 AI 创造者大赛中也有相关赛道说明,如汽车品牌的 AI 座舱赛道、AI 营销赛道、AI 售后赛道,各赛道有不同的赛题说明和核心目标。例如,AI 座舱赛道需利用相关模型和插件开发满足车主定制化需求的智能体;AI 营销赛道要开发创新的智能体方案提升营销效果;AI 售后赛道要提供提升售后服务效率与用户体验的智能体应用。 黄仁勋在 AI 界超级碗 GTC2024 的主旨演讲中提到了一些关于人工智能在复杂工业空间中的应用示例,如机器人大楼中的自治系统相互交互,仓库监控和调整行为等,虽然并非直接针对数智化车间建设,但其中的理念和技术可能具有一定的参考价值。
2025-02-25
换几个说法依托校企合作,深化产学研合作,推动数智中医普适性应用
以下是为您提供的几种说法: 1. 凭借校企合作,强化产学研合作,促进数智中医的普适性应用。 2. 以校企合作为依托,加深产学研合作,推进数智中医普适性应用。 3. 依靠校企合作,深化产学研合作进程,助力数智中医普适性应用。
2024-12-18
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
根据数智经济你觉得它的发展是怎样的
数智经济在过去十年中已极大地改变了经济和社会,影响了所有活动领域和日常生活。数据处于这一变革的核心,数据驱动的创新为欧盟公民和经济带来了巨大利益,例如改善和个性化医疗、提供新的出行方式,并有助于实现欧洲绿色协议。为使数据驱动经济惠及所有欧盟公民,必须特别关注缩小数字鸿沟、促进女性参与数据经济以及培养欧洲在技术领域的前沿专业知识。 发展需要一个强大且更协调的数据保护框架,以增强自然人和相关机构的法律及实际确定性。同时,要改善内部市场的数据共享条件,创建统一框架,制定数据治理的基本要求,特别关注促进成员国之间的合作。特定行业的欧盟法律可根据行业特点进一步发展、调整并提出新的补充元素。某些经济部门已受特定的欧盟法律监管,包括与跨境或跨欧盟的数据共享或访问相关的规则。 总之,数智经济的发展前景广阔,但也需要在法律、政策和技术等多方面不断完善和协调,以实现可持续和包容性的增长。
2024-10-29
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当今时代具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了全新的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从检测到管理的各个环节,全面提升了服务的质量和效率。 在检测方面,借助先进的技术手段,可以更精准地获取患者的身体状况信息,为后续的诊断提供更可靠的数据支持。诊断环节则因数智技术的融入而更加准确和高效,能够快速识别病症的根源。治疗过程中,数智技术能够辅助医生制定更个性化、更科学的治疗方案,提高治疗效果。 评价环节也得以创新,能够更全面、客观地评估治疗效果和患者的康复情况。而在管理方面,数智技术有助于实现对医疗资源的合理调配和高效管理,提高整个医疗服务体系的运行效率。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个良性循环,不断提升服务水平和质量。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。通过国际合作,可以吸收借鉴其他国家的先进经验和技术,进一步完善数智中医体系。这将有助于提升我国中医药在国际上的影响力,为全球健康事业贡献中国智慧和力量。 重庆作为一个具有发展潜力的地区,有望借助数智中医的发展,成为这一领域的新高地,引领行业的发展潮流,为当地乃至全国的中医药事业注入新的活力。
2024-08-12
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当前的时代背景下具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了前所未有的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从患者的检测环节,利用先进的设备和算法,更精准地获取身体状况的信息;到诊断环节,借助大数据分析和人工智能的辅助,提高诊断的准确性和效率;再到治疗环节,依据患者的个体差异制定个性化的治疗方案;以及评价环节,通过科学的指标和数据分析,客观评估治疗效果;最后到管理环节,实现对医疗资源的合理调配和患者的全程跟踪管理。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个完整、高效的医疗服务体系,为患者提供更优质的医疗体验。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。加强国际合作,可以引入国外的先进技术和理念,同时也能将我国的中医药文化和数智中医成果推广出去。这不仅有助于提升我国在中医药领域的国际影响力,还能为全球医疗健康事业贡献中国智慧和中国方案。 重庆作为一个具有发展潜力的城市,有望借助数智中医的发展契机,成为数智中医发展的新高地。通过政策支持、人才培养、技术创新等多方面的努力,重庆能够在数智中医领域取得显著成就,为中医药事业的繁荣发展注入新的活力。
2024-08-12