Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

最新的AI可以做到什么程度的智能

Answer

目前最新的 AI 能够达到以下程度的智能:

  1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
  2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。
  3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。
  4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。
  5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

例如 GPT-3 及其半步后继者 GPT-3.5(在 2023 年 3 月升级为 GPT-4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型像 GPT-2 等实际上没有真正连贯回应的能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AGI 的 5 个等级是什么?

[title]问:AGI的5个等级是什么?OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

OpenAI 通用人工智能(AGI)的计划被揭露

[title]OpenAI通用人工智能(AGI)的计划被揭露Q*的下一阶段,最初被称为GPT-6,但后来重新命名为GPT-7(原计划在2026年发布),由于埃隆·马斯克最近的诉讼而被暂停。计划在2027年发布的Q* 2025(GPT-8)将实现完全的AGI......Q* 2023 = 48智商Q* 2024 = 96智商(推迟)Q* 2025 = 145智商(推迟)埃隆·马斯克因为他的诉讼导致了推迟。这就是我现在揭示这些信息的原因,因为不会再造成进一步的伤害。我已经看过很多关于人工通用智能(AGI)的定义,但我将简单地将AGI定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。这是现在大多数人对这个词的定义。2020年是我第一次对一个AI系统感到震惊——那就是GPT-3。GPT-3.5是GPT-3的升级版本,也是ChatGPT背后的模型。当ChatGPT发布时,我感觉更广泛的世界终于赶上了我两年前就开始互动的东西。我在2020年广泛使用GPT-3,并对它的推理能力感到震惊。GPT-3及其半步后继者GPT-3.5(在2023年3月升级为GPT-4之前,它驱动了现在著名的ChatGPT)在某种程度上是朝着AGI迈出的巨大一步,而早期的模型则不是这样。需要注意的是,像GPT-2这样的早期语言模型(基本上自Eliza以来的所有聊天机器人)实际上没有真正连贯回应的能力。那么为什么GPT-3会有如此巨大的飞跃呢?

Others are asking
请给我推荐最适合翻译PDF文档的AI平台
以下是一些适合翻译 PDF 文档的 AI 平台: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。还能一键开启网页中 Youtube 视频的双语字幕。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式,但进阶功能基本需要付费。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译,有免费次数限制且进阶功能需要付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
怎么学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-06
小学生科创AI自学路线及网址、详细教程
以下是为小学生提供的科创 AI 自学路线及相关资源: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 目前暂时没有专门针对小学生科创 AI 自学的网址和详细教程,但您可以在 B 站找丰富的 AI 软件入门课程自学,也可从包图网下载工程文件学习。
2025-01-06
国内开源AI绘图软件,适合新手的推荐
以下是为您推荐的适合新手的国内开源 AI 绘图软件: 1. Midjourney:是目前较容易上手的工具,对于完全不懂 AI 绘图、想尝试的新手来说是不错的入门选择。现阶段的 AI 能辅助进行设计,视觉效果相当吸睛。在 Midjourney 中生成 UI 设计图,如果没想好输入哪些指令,可以先用指令模板:「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的“类型”替换成您想设计的产品的关键词描述(英文)。 2. Creately:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。具有智能绘图功能,可自动连接和排列图形,有丰富的模板库和预定义形状,实时协作功能适合团队使用。官网:https://creately.com/ 3. Whimsical:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作。官网:https://whimsical.com/ 4. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。具有无缝协作,支持远程团队实时编辑,丰富的图表模板和工具,支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 5. Lucidchart:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。具有拖放界面,易于使用,支持团队协作和实时编辑,丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 6. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 7. Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/
2025-01-06
AI开源软件
以下是为您整理的关于 AI 开源软件的相关信息: 10 月 AI 行业大事记中的开源软件部分: 智谱:开源文生图模型 CogView3Plus3B 上海交大:开源 F5TTS 英伟达:开源 Llama3.1Nemotron70BInstruct TeleAI:正式开源 TeleChat2115B OpenAI:开源多智能体协作框架 Swarm 100 个 AI 应用中涉及的开源软件未在提供的内容中有明确提及。 如果您想了解更多关于特定 AI 开源软件的详细信息或有其他需求,请进一步向我提问。
2025-01-06
AI开源软件
以下是为您整理的关于 AI 开源软件的相关信息: 10 月 AI 行业大事记中的开源软件: 智谱:开源文生图模型 CogView3Plus3B 上海交大:开源 F5TTS 英伟达:开源 Llama3.1Nemotron70BInstruct TeleAI:正式开源 TeleChat2115B OpenAI:开源多智能体协作框架 Swarm 100 个 AI 应用中的开源软件相关信息暂未提及。 希望以上内容对您有所帮助!如果您需要更详细准确的信息,请进一步明确您的需求。
2025-01-06
如何从0开始学习人工智能
以下是从 0 开始学习人工智能的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
dify智能体搭建
搭建 Dify 智能体的步骤如下: 1. 理解智能体母体:智能体母体可视为智能体的原型或基础形式,是创建智能体的原始模板,通过它能衍生出众多子智能体。其设计和功能为子智能体的特定任务和特性提供基础,扩展了应用范围和多样性。 2. 准备提示词:分享了用于构建和定制子智能体的提示词,可直接复制应用到项目中以创建和优化智能体满足特定需求和目标。 3. 实践创建智能体母体: 登录后台系统,点击“工作室”按钮,进入智能体管理界面。 点击“创建空白应用”选项,选择“Agent”,输入智能体名称并点击“创建”按钮。 完成创建后,点击所创建的智能体,进入编排页面。调整模型,选择所需模型并设置温度及输出长度参数(默认输出长度通常为 512,常需调整),然后输入提示词,可使用准备好的提示词模板编排进智能体。 另外,在搭建 AI 智能体时,还可参考以下步骤: 1. 设计 AI 智能体架构。 2. 规定稍后读阅读清单的元数据:新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(收藏的默认态为“仅记录”)、“发布日期”、“收集时间”等。为方便操作,可直接复制准备好的模板:
2025-01-06
在智能体。目录下的体验地址都打不开。为什么?怎么能打开?
很抱歉,暂时不清楚智能体目录下体验地址打不开的具体原因。可能是网络问题、服务器故障、链接失效等多种因素导致。您可以尝试以下方法: 1. 检查您的网络连接,确保网络稳定畅通。 2. 刷新页面或更换浏览器再次尝试访问。 3. 确认该体验地址是否仍在有效服务期内。 4. 若问题仍未解决,建议您联系相关技术支持人员获取帮助。
2025-01-06
在智能体目录下的体验地址为什么都打不开啊?
智能体快速创建需要以下 3 个步骤: 1. 选择智能体类型: 点击创建智能体。 在“从空白创建”中,选择合适的智能体类型,鼠标悬浮后,点击按钮。 对话型智能体一般用于角色扮演、智能客服、业务助理等场景,以对话形式与用户进行交互,体验链接:https://appcenter.bigmodel.cn/appcenter_v2/chat?share_code=mSBrkrJBKdyKPeeyLHLFi 。 文本型智能体一般用于文本写作、信息抽取、文案生成等场景,提供以单轮、多字段的输入形式进行交互,体验链接:https://appcenter.bigmodel.cn/console/appcenter_v2/chat?share_code=zOro1s77ljW4zqop8vMS 。 2. 在画布上配置节点。 但关于您提到的智能体目录下的体验地址打不开的问题,目前提供的信息中未明确相关原因,建议您检查网络连接是否正常,或者稍后再试。
2025-01-06
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并保持知识库准确成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”同义词。 以国际象棋计算机对弈程序为例,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需学习人类对局改进算法,后续采用基于案例的推理,现代能战胜人类棋手的程序基于神经网络和强化学习。 创建“会说话的程序”方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的独立处理对话模型,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。 您还可以思考如果人工智能得以实现,哪些任务可以交给计算机完成,比如金融、医学和艺术领域如今如何从人工智能中受益。
2025-01-06
智能化的前提条件是什么
智能化的前提条件包括以下方面: 以人为本:人工智能应作为人类的工具,最终目的是提高人类福祉,符合欧盟价值观、各项条约和《宪章》所载的基本权利和自由。 风险评估与规则制定:为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一的规则,且规则应与《宪章》等保持一致,并应当是非歧视性的,且符合欧盟的国际贸易承诺。 具体应用中的风险控制:在一些具体情况下,人工智能系统不会导致对特定领域法律利益造成重大损害的风险。例如,执行范围狭窄的程序性任务、改进先前完成的人类活动结果、检测决策模式或偏离情况、执行与所列目的相关评估的准备工作等的人工智能系统,因其任务特点带来的风险有限或降低了风险。 对人类思维方式的理解:要实现智能化,需要理解人类的思维方式,包括决策过程,区分下意识和推理过程等。 模拟人类智能的方法:如自上而下的符号推理方法模拟人类通过推理解决问题的方式,自下而上的神经网络方法模拟人脑结构,还有新兴的多智能体系统、进化方法或遗传算法等。
2025-01-06
有什么好的ai可以做到把视频中的人物或物体,背景等换掉,而且把其中的语音改成自己想要的说话声
以下是一些可以实现您需求的 AI 工具和方法: 1. 剪映 App: 生成数字人:在剪映右侧窗口顶部打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。软件会播放数字人的声音,可判断是否需要,点击右下角“添加数字人”将其添加到视频中,左下角会提示渲染完成,可点击预览查看效果。 增加背景图片:删除先前导入的文本内容,点击左上角“媒体”菜单并点击“导入”按钮选择本地图片上传,将图片添加到视频轨道上,通过拖动轨道右侧竖线使其与视频对齐,选中轨道后可调整图片大小和数字人位置。 2. TecCreative 工具: 数字人口播配音:输入口播文案,选择期望生成的数字人形象及目标语言,即可生成数字人口播视频。 图片换脸:上传原始图片和换脸图片,一键实现素材换脸。 视频换脸:上传原始视频和换脸图片,自动识别并替换人脸。 音频合成数字人:上传音频文件,选择数字人角色和输出类型,生成数字人视频。 AI 配音:输入需配音文案,选择音色,立即生成。 AI 字幕:点击上传视频,开始生成,字幕解析完成后可下载 SRT 字幕。 在使用这些工具时,请注意相关的格式和文件大小限制,如图片大小上限 5M,支持 JPG、PNG 格式;音频文件支持 MP3 和 WAV 格式,文件大小上限 5M;视频支持 MP4 文件类型,大小上限为 50M。
2024-12-30
我想做一个企业独有的招聘网站或网页有哪些AI可以做到(我不会编程)
以下是一些可以帮助您创建企业独有的招聘网站或网页的 AI 相关产品和应用: 1. 智联招聘 APP:这是一款 AI 招聘筛选工具,使用自然语言处理和机器学习技术,能够帮助企业快速筛选简历,提高招聘效率。例如,当企业招聘程序员时,它会筛选出有相关技术经验和技能的简历。 2. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。可以帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 3. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 4. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,在使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-12-18
作为新手,如何才能掌握好AI?做到什么程度算是学会了AI?
对于新手来说,要掌握好 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望在掌握基础后继续精进,最好体系化地了解编程以及 AI,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于做到什么程度算是学会了 AI,这没有一个绝对的标准。但一般来说,当您能够熟练运用所学的 AI 知识和技能解决实际问题,能够理解和解释常见的 AI 应用和模型的工作原理,并且能够在特定领域进行创新和改进,就可以认为在一定程度上掌握了 AI。
2024-12-11
如何才能做到用AI制作超级搞笑、引发共鸣、结合当前热点的段子,类似于脱口秀台词,需要几个步骤,怎么做
以下是用 AI 制作类似于脱口秀台词的超级搞笑、引发共鸣且结合当前热点段子的步骤: 1. 明确主题和热点:确定您想要围绕的当前热点话题,以及段子的大致主题和方向。 2. 构思创意:思考有趣、独特且能引发共鸣的情节和表述方式。 3. 生成台词:利用 AI 工具,输入相关的提示词,如描述您想要的幽默风格、情感色彩、语言特点等,让 AI 生成初步的台词。 4. 剪辑流程:对生成的台词进行筛选和整理,确定镜号、内容和对应的 Prompt。例如,像“男人躺在云中,四肢伸展,表情惬意”这样的具体描述。 5. 优化和完善:检查生成的段子是否足够搞笑、是否能引发共鸣、是否紧密结合了热点,对不满意的部分进行修改和优化。
2024-12-09
如何做到精通ai技术
要精通 AI 技术,您可以从以下几个方面入手: 1. 掌握基础理论: 了解人工智能、机器学习、深度学习的定义及其之间的关系。 简要回顾 AI 的发展历程和重要里程碑。 2. 夯实数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 熟悉算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 4. 学会评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 深入神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,若您偏向技术研究方向,还需掌握: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 若您偏向应用方向,则需要: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-02
我有126个docs文件,我需要用同一套提示词,对这些文件进行总结,有什么工具可以做到
以下是一些可能用于对 126 个 docs 文件进行总结的工具和方法: 1. 可以考虑使用由杨志磊开发的律师的文本总结助手。其说明为对客户提供的文件或文本进行总结,具有明确的角色设定、目标和约束条件。链接地址为:https://waytoagi.feishu.cn/wiki/HvJGwlMFhidzZukPsoKcnuXlnKe 。 2. 在 Stable Diffusion 中,Embedding 功能可以将很多提示词打包到一个文件里。例如常见的负向提示词 Embedding,如 EasyNegative,官方推荐搭配二次元模型使用,能在一定程度上优化生成效果。但需注意,对于一些复杂问题如 AI 绘图中的手部问题,可能无法完全解决。
2024-10-22
最新AI赚钱
以下是关于最新 AI 赚钱的一些信息: 从 GPTs/GLMs 如何赚钱谈起:AI 应用的曙光在哪?大多数人通过 GPTs/GLMs 赚钱较难,文章将从一个 AI 产品经理的角色复盘 2023 年的所见所闻所感来聊聊 AI 赚钱(应用落地)这件事情。 2023 年,让您月赚 5w 的 48 个 AI 工具:包括 AI 研究工具(如 Claude、ChatGPT 等)、图片处理(如 DallE 等)、版权写作(如 Rytr 等)、设计(如 Canva 等)、网站搭建(如 10Web 等)、视频处理(如 Klap 等)、音频处理(如 Murf 等)、SEO 优化(如 Alli AI 等)、Logo 设计(如 Looka 等)、聊天机器人(如 Droxy 等)、自动化工具(如 Make 等)、市场营销等方面的工具。 3 月动态|23 个 AI 新产品: Fixie.ai 是获得 1700 万美元种子轮融资的,由 LLM 驱动的,与外部系统进行交互的代理,旨在将 LLM 与企业数据、系统与工作流相链接。 Regex.ai 是一款基于 AI 的正则表达式自动生成工具,开箱即用,所见即所得,选择数据即可生成正则表达式,提供多种数据提取方式。 Enhance AI 是一分钟内在产品内集成最先进的 LLM(目前是 OpenAI GPT 模型)的低/无代码工具。
2025-01-06
最新的AI新闻有哪些
以下是一些最新的 AI 新闻: 2024 年 6 月,苹果发布了 AI 原生操作系统,加强了硬件和模型布局;Claude Sonnet 3.5 发布,挑战 OpenAI;视频生成领域 Runway Gen3 和快手可灵表现优秀;AI 3D 技术逐渐崭露头角;Google 和月之暗面推出长上下文缓存技术。整体趋势是技术不断进步,各领域竞争激烈。 快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。 2024 年 1 月,斯坦福大学 Mobile Aloha;1 月 10 号 LumaAl Genie 文生 3D;1 月 11 号 GPT store 上线;1 月 MagnificAl 高清放大爆火;1 月最后一天苹果 Vision Pro 宣布发售。 2024 年 9 月,Orange AI 有相关小结,包括鼓励建立自媒体,推出中文版 AI 播客 Demo 并吸引大量参与者,开设 AI 酒吧 Bar2AGI 等。此外,国庆节期间,OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。
2025-01-04
Ai最新发展成果
以下是 AI 的一些最新发展成果: 医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。 AI 提前三年诊断胰腺癌。 两名高中生与医疗技术公司合作,发现了与胶质母细胞瘤相关的新靶基因。 AI 帮助抗衰老,筛查出高效的药物候选物。 使用 AI 寻找阿尔兹海默症的治疗方法。 AI 帮助早期诊断帕金森。 应用形态重构: AI Agent 取得突破,为机器人获得自主行动能力指明新方向。 AI 编程工具的进展预示着人机协作模式的变革。 2024 年关键进展时间线: 2 月,OpenAI 发布视频生成模型 Sora,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 基础通识课: 讨论了 AI 模型的基础、最新进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。 回顾了人工智能的发展历程,从图灵测试到如今大模型和多模态模型百花齐放。 指出大模型由数据、算法、算力构成,算法有技术架构的迭代,数据质量对生成理想的大模型至关重要。 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进。 早期大语言模型回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景。
2025-01-03
请整理最新的 gpt的提示词。
以下是关于 GPT 提示词的相关内容: 1. 15 个月之后创作童谣的提示词: 需求分析:上一次需要输入“创作童谣的场景、角色、故事等”,这次只需输入一个关键词即可创作。 输入:任意关键词。 输出:跟关键词相关的儿童童谣。 测试现有模型的效果:对包括 ChatGPT 4o、ChatGPT o1、Claude、Kimi、豆包、智谱清言 GLM4、Gemini 2.0 Flash Experimental、Gemini 2.0 Flash Thinking Experimental 等模型进行了测试,除 LIana 3.1 405B 的输出未贴出,其他模型的结果可供感受和评价。 2. GPT 优化 Prompt: 存在问题:某些标题使用太绝对和夸张的描述,如“小姐姐的必备”“你值得拥有”“秒变心情大好”。 分析:包括日常口语风格可能带有夸张倾向、情感色彩可能被放大、示例可能影响、对“过度”标准理解差异等。 优化措施:在日常口语风格部分避免使用太绝对的词语;在情感色彩部分避免使用过于强烈的正面情感描述;在 Constraints 部分添加避免使用绝对性词汇;对 Examples 部分进行更严格筛选。 3. AI 快速总结群聊消息的提示词: 直接发送原文 GPT 无法按意图工作,需编写提示词。 单人发言版:基于李继刚老师的“通知消息整理助手”修改了“文字排版大师”的 Prompt。 多人发言版:将提示词和文字原文发送给 GPT,整理输出结果,删掉无关内容,替换双星号。
2025-01-02
最新ai资讯
以下是为您整理的最新 AI 资讯: Recraft AI 作为 AI 平面设计工具,更新了 60 种新的图像风格。用户可利用其生成和编辑插画、海报、产品周边等,每日有免费试用点数,生成的图像可商业使用。地址:https://www.recraft.ai/ 。 AI 公文智能体“学习强国公文助手”在文小言 APP 正式上线,可进行文汇检索、AI 公文书写、AI 公文润色等。使用方式:下载文小言 APP 找寻。 Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位:https://jobs.netflix.com/jobs/278437235 。 Shopify 的 AI 助手 Sidekick 已上线,它能在 Shopify 中执行多种操作,如提取相关数据、操作新功能或创建报告:https://techcrunch.com/2023/07/26/shopifysidekickislikechatgptbutforecommercemerchants/ 。 Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能:https://twitter.com/Artifact_News/status/1684631632374902784?s=20 。 OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,旨在确保 AI 模型的安全发展:https://openai.com/blog/frontiermodelforum 。 Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器:https://techcrunch.com/2023/07/25/openaiscuttlesaiwrittentextdetectoroverlowrateofaccuracy/ 。 对于新手学习 AI,建议持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 您还可以通过以下渠道获取更多 AI 资讯: AI 资讯公众号:超时空视角 小红书/抖音:EverAI B 站:Ever AI 酱(这里会有教程及 AI 工具界面操作) 公众号地址(辛苦点赞):https://mp.weixin.qq.com/s/TBHiM_0w_bwUc20_KVQQ
2025-01-02
AL最新前沿
以下是 AI 领域的一些最新前沿信息: 2024 年 2 月第一周: Maimo:能从任何内容中提取要点。 Jellypod:可将订阅内容变成播客。 ARTU:能汇总和总结内容。 Lepton Search:用 500 行代码构建的 AI 搜索工具。 VectorShift:AI 自动化应用构建平台。 Findr:AI 搜索您所有软件中的内容。 Recraft:AI 帮助创建平面内容和矢量标志。相关链接:,日期:2024/02/01。 2024 年 1 月第四周: 扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,并投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,预计 24 年底 Meta 的 GPU 算力达 60 万个 H100。 今年英伟达总的 H100 出货量将有 15 万张,Meta 采购量占 1/5。 Meta 正在开发名为 Llama 3 的大语言模型,以提升代码生成和逻辑推理能力。 扎克伯格推动开源的通用人工智能开发方式,这也是大家关注其进展和 Llama3 的原因。相关链接:,日期:2024/01/23。
2025-01-01