直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

现在ai发展到什么程度了

回答

目前 AI 的发展呈现出以下情况:

  1. 企业大模型市场崛起,通用大模型遇到算力瓶颈,英伟达在算力方面获利颇丰,但背后存在能源问题。同时,大模型还面临知识不够的问题,需要将饱含人类智慧的高含量知识训练进去,例如从百度贴吧的“弱智吧”获取知识。
  2. AI 技术正在加速发展,且没有减缓的迹象,尽管媒体报道可能减少,但实际进展非常迅速。
  3. 在专利审查领域,AI 得到广泛应用,通过自动化和智能化手段帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

我们今天的重点是讲企业大模型市场崛起。因为现在通用大模型也遇到瓶颈。算力可能遇到点瓶颈,英伟达挣的盆满钵满,算力的背后是能源。但我今天还发了一个短视频,他们碰到知识不够的问题了。因为人工智能也在超越人类,之前还在跟人类学习,人类原来也没有意识把很多知识沉淀下来。所以他们现在发展到什么程度呢?像他们最近发现,百度贴吧里的“弱智吧”原来是特别好的学习知识的地方。这个“弱智吧”名字没起好,其实里边一点都不弱智,里边的问题都挺难回答的。我去看了看,好多问题我都回答不出来。比如说明明是睡觉,为什么要去酒店?明明是喝酒,为什么要去夜店?睡觉应该去夜店睡觉,喝酒才去酒店喝酒对吧?所以不要看互联网上满是数据,数据不等于信息,信息不等于知识,知识不等于智慧。所以训大模型就需要把饱含人类智慧的高含量的知识训进去。

世界好像变难了,我们该如何应对?| 对谈绿洲资本张津剑之 AI、人与生命力

加速中的AI:张津剑认为AI技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但AI的实际进展非常迅速。

问:有没有专利审查方面的AI ?

是的,近年来,人工智能(AI)在专利审查领域得到了广泛应用。AI技术通过自动化和智能化的手段,帮助专利审查员更高效地处理大量的专利申请、检索相关文献、评估专利性和创新性等任务。以下是一些具体的AI应用和平台,它们在专利审查过程中发挥了重要作用:

其他人在问
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-17
有哪些ai可以直接制作Excel表格的
以下是一些可以直接制作 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 可自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. GPTExcel:在相关排行中有所体现。 6. SheetGod:在相关排行中有所体现。 7. 酷表 ChatExcel:在相关排行中有所体现。 8. GPT Workspace:在相关排行中有所体现。 9. OpenAI in Spreadsheet:在相关排行中有所体现。 10. Ajelix AI Excel Tools:在相关排行中有所体现。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
ai生成配图
以下是关于 AI 生成配图及相关内容的信息: 如果您想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,关于 Runway 生成 AI 动画,可以使用图片+文字描述功能,将 MJ 生成的图片增加对应的动态描述,输入 Runway,同时增加镜头变换的设置(具体教程看)。悦音 AI 配音具有旁白质感,如磁性浑厚、大片质感、娓娓道来。
2024-11-17
如何用AI提高学习效率
以下是关于如何用 AI 提高学习效率的方法: 一、学习外语 1. 语言学习应用 Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,重点是实际交流所需技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度,提供适合练习和反馈。注册并选择语言,使用多种练习模式学习。 2. AI 对话助手 ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,与 AI 对话,询问语法、词汇等问题,模拟交流场景。 Google Assistant:支持多种语言,用于日常对话练习和词汇学习。设置目标语言,通过语音或文本输入互动。 二、英语学习 1. 智能辅助工具:利用 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用 Duolingo 利用 AI 量身定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:利用 ChatGPT 进行会话练习和对话模拟,提高交流能力和语感。 三、数学学习 1. 自适应学习系统:使用 Khan Academy 结合 AI 提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用 Photomath 通过图像识别和数学推理技术提供解答和解题步骤。 3. 虚拟教学助手:使用 Socratic 利用 AI 解答问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的课程和实践项目,利用 AI 进行数学建模和问题求解。 四、未来教育中 AI 的应用 1. 个性化学习平台:如 Knewton 平台,利用数据分析构建个性化学习路径,预测学习难点并提供解决方案,提升学习效率。 2. 自动评估:如 Pearson 的 Intelligent Essay Assessor,通过自然语言处理技术自动批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 Google 的 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实和增强现实:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获取 AI 反馈。
2024-11-17
我想要一个可以指导我爬虫的AI
以下是为您提供的关于爬虫的指导: 如果您不会代码但想要完成一个爬虫应用,可以参考以下步骤: 1. 已知文章地址:https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ 。 2. 已知 ChatGPT 很会写程序,并且使用 Colab 。 3. 得出结论:让 ChatGPT 帮我们写抓取该文章正文内容的程序,然后在 Colab 里运行。 在许多情况下,对于爬虫任务,我们需要明确以下几点: 1. 当有简单需求时,给 AI 下达明确命令来完成一次性任务,例如制作一个简单的 Chrome 插件、编写脚本或创建 Python 爬虫。 2. 当 AI 满足简单需求并获得正反馈后,期待会提高,但需要了解 AI 编程的边界和限制。 3. 对于大多数需求,应优先寻找现成的软件解决方案,遵循以下顺序: 优先找线上工具,例如制作白底图等功能,如果线上有现成的工具那最好。 其次找插件,基于现有系统找合适的插件。 最后是本地应用,当线上工具和插件都不满足需求时,再考虑本地应用。 4. 对于 API 功能: 先找现成的开源工具,GitHub 上很多。 然后考虑付费服务。 5. 如果都找不到现成的方案,才考虑自己编程。毕竟,人生苦短,要以终为始,抛开技术障碍,聚焦于目标。
2024-11-17
如何用ai提升电脑刺绣的自动化程度
以下是一些可以辅助提升电脑刺绣自动化程度的 AI 相关方法和工具: 1. 图像识别技术:利用 AI 的图像识别能力,对刺绣图案进行精准识别和分析,为自动化刺绣提供准确的图案信息。 2. 智能设计软件:一些具备 AI 功能的设计软件,能够根据用户需求和设定的参数,自动生成刺绣图案的设计方案。 3. 自动化控制算法:通过 AI 算法优化刺绣设备的控制流程,提高刺绣的速度和精度。 4. 质量检测系统:借助 AI 的视觉检测技术,对刺绣成品进行自动质量检测,及时发现并纠正问题。 需要注意的是,在应用这些 AI 技术时,可能需要一定的专业知识和技能,同时要根据实际情况进行调整和优化,以达到最佳的自动化效果。
2024-11-05
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
中国的AI发展到什么程度了?
目前中国的 AI 发展呈现出强势崛起的态势。中国的模型在面对制裁时展现出坚韧和战略智慧,在一些方面取得了显著成果: 达到或超过了 GPT4 水平。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。 模型凭借自身优势正在“屠榜”,证明在 AI 领域仍占据重要地位。 同时,AI 在中国的发展也带来了一些新的现象和挑战,如 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧;AI 立法、伦理讨论仍然大规模落后于技术进展。
2024-10-31
最新的AI可以做到什么程度的智能
目前最新的 AI 能够达到以下程度的智能: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 例如 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型像 GPT2 等实际上没有真正连贯回应的能力。
2024-10-30
现在的ai+宠物,发展到什么程度了?
目前,AI 与宠物的结合已经取得了一定的发展,主要体现在以下几个方面: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人更好地照顾宠物,比如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 2. AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,可增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 3. AI 宠物图像生成:使用生成式 AI 模型,能根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。
2024-10-10
AI发展到什么程度了
目前,AI 正处于快速发展的阶段。在日常生活中,AI 已广泛应用于交通、天气预测以及电视节目推荐等方面,能够以过去难以想象的方式观察、理解世界并与之互动。 AI 技术正在加速发展,且没有减缓的迹象。虽然媒体报道可能有所减少,但实际进展非常迅速。 在生物制药和医疗保健等领域,AI 正在促使其产业化,被应用于药物设计、诊断、医疗服务交付和后台运营等方方面面。例如,机器能够学习只有经过专业培训才能做到的事情,并且能够轻松复制和扩展专业知识,实现规模效应。生物技术也因 AI 得以大规模扩展。
2024-09-03
现在有哪些大模型效果与性能的对齐工具
目前对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的理解程度,涵盖语法、语义、上下文和隐含意义。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:衡量对广泛主题的知识掌握及特定领域的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊指令的能力。 6. 偏见和伦理:评估生成文本是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,对用户反馈的适应和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务,提供的 API 和工具的易用性。 为进行有效比较,可采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准评估基准。 2. 自定义任务:根据特定需求设计任务评估特定领域表现。 3. 人类评估:结合人类评估者的主观评价,尤其在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中比较不同模型表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 对于大模型的安全对齐,通过对齐(指令调优)能使语言模型更好理解人类意图并增加安全保障,避免输出有害内容。对齐任务可拆解为监督微调及获取 reward model 与进行强化学习调整输出分布两部分。LLAMA2 专门使用安全有监督微调确保安全。强化学习能根据人类反馈调整分布,使模型面对训练分布外数据时能拒绝不当回答。但 Alignment 并非能防护所有安全问题,存在越狱情况使模型对齐失效。 Qwen 2 开源后模型性能超越目前所有开源模型和国内闭源模型。玉宝搞过的 LLM 在线评估中可看到国内闭源大模型的 HUMANEVAL 测评得分,可与 Qwen 2 对比,参考网址:https://www.llmrank.cn/ 。2023 年 8 月起,通义千问推出 Qwen 系列,Qwen 系列的 72B、110B 模型多次登顶 HuggingFace 的 Open LLM Leaderboard 开源模型榜单。Qwen 2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,也已上线中国大语言模型评测竞技场 Compass Arena,测评地址:https://opencompass.org.cn/arena 。Compass Arena 集齐了国内主流的 20 多款大模型,用户可选择两两“对战”。
2024-11-14
现在国内比较好的AIGC应用都有哪些?
以下是一些国内比较好的 AIGC 应用: “悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
2024-11-14
现在在生成思维导图方面做的最好的ai是哪个
以下是一些在生成思维导图方面表现出色的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,能一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有以下相关产品: 1. Mymap:打磨出色,图表种类多,能根据问题自动选择和询问合适的图表类型,速度快且信息准确。 2. AmyMind:特色是可将创建的思维导图变成 PPT 并下载编辑。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
我现在正在使用mid journey生成图片,做漫画,我想知道怎么样写提示词,才能更好的让mid journey生成我需要的图片
以下是关于在 Midjourney 中写提示词以生成所需图片的一些指导: 1. 常规操作: 登录 Discord 网站,打开 MJ 服务器出图。 通过 /imagine 命令,在对话框输入“/imagine”激活指令,然后把提示词粘贴到“prompt”后面,点击发送即可。 想要多少张图片,就要输入多少次提示词,且输入下一次提示词之前,要等待上一张图片生成完毕。 2. 使用插件提效: Autojourney 是电脑浏览器的一个插件,可在浏览器拓展程序中下载安装。 它功能强大,支持批量发送提示词、自动下载图片、自动放大图片、生成提示词等功能,能够提高使用 Midjourney 的效率。 点击浏览器右上角的插件,选择 Autojourney 插件将其激活,将提示词复制到插件中点击发送,提示词会排队进入 MJ 发送程序,自动批量出图。 Autojourney 插件支持一次输入 10 组提示词。 3. Midjourney V6 更新风格参考命令 2.0“sref”: 将“sref”和 URL添加到提示的末尾,以参考风格参考图像的视觉风格创建新图像。 新提示本身没有美学内容,有助于“sref”的执行。 4. Midjourney 最新编辑器更新: 常见问题:提出极其不合适的请求或要求修改非常小的区域,可能无法得到预期结果;在场景中放很小的头部并要求外绘,生成的身体可能会太大。 重纹理化:是一种通过使用另一张图像来引导图像结构或构图的方法,从构图引导图像开始,然后使用提示词和参数添加所需细节。 右侧显示的缩略图:显示器右侧的缩略图显示最近几次编辑会话的记录,左边稍大的缩略图是上传或链接的母图像,其他四张是子图像,展示根据提示生成的不同表达方式。 “View All /查看全部”按钮:每次在不改变选择区域的情况下对母图像进行编辑时,会生成新的缩略图行,更改提示词,新提示词对应的图像会显示在子图像中。
2024-11-13
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
你觉得ai+健康 会如何发展 ,优势和挑战分别是什么
AI 在健康领域的发展具有巨大潜力,同时也面临着一些优势和挑战。 优势方面: 有助于推进医疗保健中负责任地使用 AI,促进开发价格合理且能拯救生命的药物。 能够为教育者提供支持,例如在学校中提供个性化辅导,从而变革教育模式。 挑战方面: 存在工作场所监视、偏见和岗位替代等风险,可能影响劳动者权益。 可能会出现对劳动者补偿不足、不公平评估工作申请以及妨碍劳动者组织的情况。 对于医疗保健中 AI 应用的安全性需要建立相应的程序来接收和处理相关报告,并采取补救措施。 总之,AI 在健康领域的发展前景广阔,但需要妥善应对潜在的挑战,以实现其最大的价值和效益。
2024-11-14
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
2023年大模型发展有什么重要技术
2023 年大模型发展的重要技术包括以下方面: 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。 多模态大模型的应用: 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
2024-11-14
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14