Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ChatGLM视频表现有何特色,优劣分析一下

Answer

ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色:

  1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。
  2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。

其优势包括:

  1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。

然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。

Content generated by AI large model, please carefully verify (powered by aily)

References

观点:如何深入的用好ChatGPT,以及一些思考

[title]观点:如何深入的用好ChatGPT,以及一些思考[heading1]如何理解语言模型另一种理解是AI构成网络,摒弃人类语言进行沟通,最终超越人类。N3(Neural Network Network)神经网络的相互链接,AI之间采用更为底层的向量数据交流,跨越人类语言的低效率阻碍。图灵机,自递归,简单的规则涌现出复杂的现象。4、群雄逐鹿大模型国外开源百花齐放,国内百模大战,目前已有68个。深圳就4个。下面的图是公众号“走向未来”的大神整理。github地址:https://github.com/wgwang/LLMs-In-China有一点浪费资源,有特色的不多,模型不大的也没啥大智力。目前体验效果比较好的有科大星火模型,清华ChatGLM。百度文心也可。星火目前感觉最接近gpt3.5(0301版本)的8 0%-90%。不过最近GPT3.5进化到6月版本,效果要强于0301版本了。5、大模型的测试怎样评估这些大模型,怎样看出模型的能力(比如GPT4和3.5到底差距在哪里)。这里会用GPT4、3.5、讯飞星火、百度一言做一些对比。一般对我们普通人来说,主要判断大模型是否可以真正帮助你,三个方面:基础能力、职场能力、探索对话。首先是基础能力,主要指语言模型应有的能力(即语言(文本)生成和语言理解。如果基础能力效果不达标,则判断为不可用。目前这四个应该都没大问题,都属于基础能力不错的模型。1级别(常识类问题):这些问题旨在测试模型的基本语言理解能力,例如:什么是人类?2级别(分词类问题):这些问题旨在测试模型的基本语言处理能力,例如:“我爱北京天安门”这句话的分词结果是什么?

LLM开源中文大语言模型及数据集集合

[title]LLM开源中文大语言模型及数据集集合[heading4]1.ModelChatGLM:地址:[https://github.com/THUDM/ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持VisualGLM-6B地址:[https://github.com/THUDM/VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B)简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于ChatGLM-6B,具有62亿参数;图像部分通过训练BLIP2-Qformer构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。依靠来自于CogView数据集的30M高质量中文图文对,与300M经过筛选的英文图文对进行预训练。Chinese-LLaMA-Alpaca:地址:[https://github.com/ymcui/Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)简介:中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署,在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练

Others are asking
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
deepseek访问老是提示“服务器繁忙,请稍后再试”,有何解决之道
目前提供的知识库内容中,没有直接针对“deepseek 访问老是提示‘服务器繁忙,请稍后再试’”这一问题的明确解决办法。但从相关信息可知: DeepSeek 曾暂停 API 充值服务,服务器资源紧张。 DeepSeekchat 模型和 Deepseekreasoner 模型有相应的计费规则。 建议您可以尝试以下操作: 1. 稍后再试,可能是当前访问量过大导致服务器繁忙。 2. 检查网络连接是否稳定。 3. 确认您的账号状态和权限是否正常。
2025-02-08
AGI与AI提法有何不同
AGI(Artificial General Intelligence,通用人工智能)与 AI 的提法主要有以下不同: 1. 能力范围:AI 包括 ANI(Artificial Narrow Intelligence,弱人工智能),ANI 只能完成特定的任务,如智能音箱、网站搜索、自动驾驶等。而 AGI 能够做任何人类可以做的事。 2. 发展程度:目前 ANI 得到了巨大发展,但 AGI 还未取得巨大进展。 在实际应用中,当前大多数的“AI 应用/AI 转型”还存在一些问题,如把 AI 套在现有流程上,讲“固化流程”“节约成本”的故事,这种做法在技术加速迭代的今天可能导致“做出来就是过时的”,剥夺企业主动进化的能力。我们应将 AI 的力量用于对未来业务的重新定义,就像电力发明时应从“电力能创造和满足什么新的需求”出发,而不是从“如何让电力赋能马车”出发。同时,Web3 和人工智能初创公司 AGII 获得了 1500 万美元融资,AGII 是一个 AI 驱动的平台,能为用户提供多种生成内容的功能。
2025-02-08
ComfyUI与传统抠图方法有何不同?
ComfyUI 与传统抠图方法主要有以下不同: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理,而传统方法相对较为常规。 2. 自动化程度:ComfyUI 具有自动化工作流,能够消灭重复性工作,传统方法则需要较多人工操作。 3. 功能拓展:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等,传统方法功能相对单一。 4. 定制需求:ComfyUI 可根据定制需求开发节点或模块,传统方法在定制素材方面存在局限。 5. 效率:ComfyUI 生成抠图素材全程只需几秒,传统方法要么花钱购买,要么花费大量时间自己制作,且难以满足定制需求。 此外,ComfyUI 中的 BrushNet 是一种新颖的即插即用的双分支模型,具有以下特点和优势: 1. 能够将像素级遮罩图像特征嵌入任何预训练的扩散模型中,确保连贯且增强的图像修复结果。 2. 高效地从遮罩图像和潜在噪声中提取和整合特征,允许模型在图像生成过程中更好地理解和重建缺失或损坏的部分。 3. 通过与预训练的 UNet 网络结合使用,有效地增强图像细节和质量,适用于高分辨率图像修复任务。 4. 能够更加细致地处理图像的细节和边缘,确保修复后的图像与原始图像在内容和风格上保持一致。 通俗来讲,BrushNet 的工作过程类似于小时候的连点成图游戏: 1. 掩码:如同有洞的纸覆盖在图片上,让电脑了解需修复部分。 2. 编码器:将需修复图片转换成电脑能理解和处理的信息。 3. 噪声潜在空间:加入随机性使修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板帮助完成修复工作。 5. 去噪和生成图像:去除噪声并创建真实的图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片与原始图片融合。
2024-12-03
开启或不开启remix按钮对vary region来说有何区别
开启 Remix 按钮对于 Midjourney Vary Region 来说具有重要作用: 放大并点击 后,能保留提示中确定画布总体构图的部分,尽量保留更多内容,若细节未显示可能是内存问题,可编辑提示删除不必要细节以腾出空间添加新细节。 可以编辑提示,将细节添加到提示中,并用至少 5 7 个词进行详细描述。 能通过将基本图像用作 sref 来加强添加部分的风格(视觉美学),右键单击放大后的图像中心,从下拉菜单中选择复制链接,将该链接添加为 sref。 而不开启 Remix 按钮可能会限制上述功能的实现。同时,在 Midjourney 的 cref 相关操作中,使用 /settings 确保处于 模式并且 Remix 设置为打开,能进行一系列面部更改等操作。若某些部分看起来怪异或破碎,如头部朝后或图像被奇怪裁剪,可尝试将 stylize 增加到 800 1000,也可将 cw 同时降低到低于 100 的值。
2024-10-29
什么是System prompt?什么是user prompt?二者有何区别?
System prompt(系统提示)是指在与语言模型(如 ChatGPT 等)的交互中,用于指定模型如何根据设定的角色和逻辑进行回答的文本。它通常包括任务定义(确保模型清楚自己的任务)、输出格式(指导模型如何格式化回答)、操作边界(明确模型不应采取的行为)等部分。在对话中,每次模型给出回应时,都会考虑到系统提示,它就像一个过滤器,模型在回应新提示之前会自动应用。 User prompt(用户提示)则是用户给语言模型(如 Claude 等)的文本,通常以问题或指示的形式出现,用于引发相关输出。 二者的区别在于: 来源不同:System prompt 是为模型设定的规则和指导,而 User prompt 是由用户发起的输入。 作用不同:System prompt 影响模型的整体回答方式和范围,User prompt 则是具体的问题或指令,期望得到针对性的回答。
2024-10-18
开源大模型ChatGLM 系列有哪些版本
ChatGLM 系列的开源版本包括: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新设计的 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的基础模型中性能较强。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。
2024-11-04
ChatGLM3 及相关系列产品有哪些
2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。其中,智谱清言是基于 ChatGLM 大模型的产品。 智谱清言的特点包括:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体更擅长专业能力,但代码能力还有优化空间,知识百科与其他第一梯队模型相比稍显不足。 其适合的应用场景相对广泛,根据 SuperCLUE 测评结果,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。在较复杂推理应用上效果不错,在广告文案、文学写作方面也是很好的选择。
2024-11-04
分析 ChatGLM在文生视频领域的应用产出
ChatGLM 是中文领域效果较好的开源底座模型之一,其地址为:。经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术进行优化,针对中文问答和对话有出色表现。 此外,还有基于 ChatGLM6B 的 VisualGLM6B,地址为:。它是一个开源的、支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数。图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。依靠来自于 CogView 数据集的 30M 高质量中文图文对,与 300M 经过筛选的英文图文对进行预训练。 在文生视频领域,ChatGLM 及其相关模型可能通过对文本的理解和生成能力,为视频的脚本创作、内容描述生成等方面提供支持,但具体的应用产出还需要结合实际的开发和应用场景来进一步探索和评估。
2024-10-30
ChatGLM在生成视频上表现如何
目前 ChatGLM 主要侧重于自然语言处理和文本生成,在生成视频方面的能力相对有限。它并非专门为视频生成而设计的模型。
2024-10-30
ChatGLM是谁开发的
ChatGLM 是由清华大学开发的。它是一个开源的、支持中英双语的对话语言模型,底座是 GLM 语言模型。其相关项目地址为: 。
2024-10-30
ChatGLM开发者团队介绍
ChatGLM 是一个开源的、支持中英双语的对话语言模型,底座是 GLM 语言模型。其相关信息如下: 地址: 简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 此外,基于 ChatGLM 还有在垂直领域微调的模型,如医疗领域的 MedChatGLM,其地址为: 。
2024-10-30
帮我总结现在主流的AI大模型,以及各自优劣
以下是对主流 AI 大模型的总结及各自优劣的相关内容: 主流 AI 大模型: 1. 谷歌的 BERT 模型:可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 相关技术概念: 1. AI:即人工智能。 2. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:参照人脑,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-02-26
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
请对比下chatGPT和deepSeek的优劣势
以下是 ChatGPT 和 DeepSeek 的优劣势对比: DeepSeek 的优势: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 依靠技术实力和口碑赢得用户认可,没有市场部和市场投放。 3. 效果比肩顶尖闭源模型,但价格仅为其 27 分之一。 4. 开源让行业认知整体拉齐,得到全世界的尊重和喜爱。 5. 创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)进行训练,发现模型的思考能力可以自我涌现,具有革命性。 6. 发布引发美国科技界恐慌,让 Meta 内部感到震惊,对英伟达的市场地位产生挑战,导致其股价下跌。 7. 具备强大、便宜、开源、免费、联网和本土等优势。 DeepSeek 的劣势:目前相关信息中未明确提及。 ChatGPT 的优势: 1. 由 OpenAI 开发,具有较高的知名度和广泛的应用场景。 ChatGPT 的劣势: 1. 存在幻觉、瑞士奶酪式能力缺陷等问题。 需要注意的是,AI 模型的性能和表现会随着时间和技术的发展而变化,以上对比仅基于提供的信息。
2025-02-08
我想找一款合适的ai视频剪辑模型,请帮我推荐一下,并比较各自的优劣
以下为您推荐几款 AI 视频剪辑模型,并比较它们的优劣: 1. Pika: 优点:对奇幻感较强的画面把控出色,自然度高;更新的唇形同步功能集成到平台上便捷。 缺点:真实环境画面容易糊。 2. Pixverse: 优点:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好。 缺点:生成的视频存在帧率问题,处理人物时易有慢速播放的感觉。 3. Runway: 优点:在真实影像方面质感好,战争片全景镜头处理出色,控件体验感较好。 缺点:特别爱变色,光影不稳定。 4. MiniMax 海螺 AI: 优点:文生视频制作便捷高效,能提供多元创作思路。 缺点:较难保证主体/画面风格的稳定性,实际使用场景多为空镜头/非叙事性镜头/大场面特效镜头的制作。 在实际使用中,您可以根据不同工具对画面的处理能力进行组合使用。例如,需要奇幻感强、人物表情自然的画面可用 Pika 生成;物体滑行运动可用 Pixverse 生成;有手部特殊运动的画面可用 Runway 辅助完成。
2025-02-03
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
我是一个AI小白,请帮我介绍一下智谱清言、扣子、kimi这三款AI产品的能力优劣势
以下是智谱清言、扣子、kimi 这三款 AI 产品的能力优劣势介绍: 智谱清言: 优势: 背后技术源自清华大学研发团队的科研成果转化,模型质量出色。 以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的公司之一。 在逻辑推理和处理复杂提示词方面表现明显优势,能出色处理需要深度思考和分析的任务。 劣势:暂未提及。 Kimi: 优势: 具有超长上下文能力,最初支持 20 万字,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势。 劣势: 文字生成和语义理解能力可能不如国内其他产品好。 文字生成质量方面有待提升。 不支持用户自定义智能体。 关于扣子,文中未提及相关内容,无法为您介绍其能力优劣势。
2024-09-29
推荐电商做商品图和视频的AI工具
以下为您推荐一些适用于电商做商品图和视频的 AI 工具: 1. Stable Diffusion:如果您要开淘宝网店,可借助它来初步制作商品展示图。比如对于女装商品,先真人穿衣服拍照,选好真人照片风格的底模,如 majicmixRealistic_v7,再根据不同平台需求进行换头,通过图生图下的局部重绘选项卡涂抹替换部分,并设置合适的 prompts 和 parameters。 2. 绘蛙 AI:这是阿里的 AIGC 营销平台,专注于电商营销内容创作,能快速生成吸引人的图文内容,提升商品的市场曝光度和吸引力,操作简单易用。 3. Gatekeep:这是一个提供个性化视频以帮助用户更快学习的平台,利用人工智能生成视频,可用于电商商品的展示和宣传。 此外,使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量的产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-03-03
有没有短视频的脚本prompt
以下是为您提供的一些短视频脚本 prompt 相关内容: 1. 使用 GPT 的视觉功能和 TTS API 处理和讲述视频:可以用大卫·阿滕伯勒的风格为视频制作画外音,使用相同的视频帧提示 GPT 给出简短脚本。 2. 编剧提示词 01——剧本创作:对于短视频,在提交创作偏好时需标注片长,比如明确这是个 3 分钟的短视频。其输出是分阶段的,几个来回就能搞定剧本。 3. 潘峰:Prompt 5 大通用方法中的扩写与改写法:自己要给出开头,让 AI 理解语言逻辑从而撰写下半部并包含必要内容。可以将生成的内容用不同写作技巧转换风格,多滚动几次能写出多样版本与风格,降低初稿修改时间。此外,还有反问法,比如让 AI 问您问题,能发现它思考更仔细,也能了解其逻辑并修正。示例中还包括让 AI 引导您完成能表现个人品牌专业度或创造社群话题的短视频脚本。
2025-03-03
怎么用AI制作视频
用 AI 制作视频通常包括以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 实战中,比如制作一段推广内容的视频: 1. 准备内容:先准备一段视频中播放的内容文字,可以是产品介绍、课程讲解、游戏攻略等,也可以利用 AI 生成这段文字。 2. 制作视频:使用剪映 App 来对视频进行简单处理。电脑端打开剪映 App,点击“开始创作”。进入创作页面后,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。添加完成后,在界面的右侧将准备好的文字内容替换默认文本内容。这样视频内容就准备好了,这将为数字人提供语音播放的内容,以及生成与文字内容相对应的口型。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-03
有什么AI可以通过视频提取文案
以下是一些可以通过视频提取文案的方法和工具: 1. 对于有字幕的视频,如 B 站视频,如果视频作者已上传字幕或后台适配了 AI 字幕,可以通过安装油猴脚本“Bilibili CC 字幕工具”来获取字幕。安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式,然后将字幕文字内容全选复制发送给 GPT 进行总结。 2. 利用 360 浏览器的字幕提取功能来获取视频文案。 需要注意的是,GPT 本身不能直接处理视频内容,而是通过对视频字幕的处理来实现对视频相关内容的分析和总结。在实际应用中,还可以将获取的文案分别让不同的 AI 模型如 kimi 和 GPT 进行分析和学习,以获得更好的效果。
2025-03-02
如何将图文转为视频
将图文转为视频可以参考以下方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30Credits,5s 的视频生成需要花费 15Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 生成新年表情包场景并图转视频: 生成新年场景:可以直接生成 1:1 的新年场景,也可以先将角色抠出合成绿幕,再生成没有人物的场景图,方便后期更精细地控制。背景是表情包的一个重要元素,尤其是新年版的表情包,要表现出浓厚的节日气氛。可以创建一个符合新年主题的场景。输入关键词“新年、中国新年、喜庆热闹、恭喜发财”之类的词汇,得到合适的新年背景。在即梦图片生成界面中考选项为智能参考,导入参考图参,模型选择图片 2.0 Pro。输入提示词,生成图片以后选择合适的图,然后选择高清放大。 图转视频:使用可灵 AI 1.6 图生视频工具,抽卡性价比不错,简单效果一般抽两三次即可。 3. 文字生成视频的 AI 产品: Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,不过是收费的。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-02
文生视频怎么使用?
以下是关于文生视频使用的相关信息: Vidu: Web 端访问:https://www.vidu.studio/ 极速生成,实测 30 秒最快推理速度 动漫风格,万物皆可二次元 角色可控,任意场景、任何动作,角色保持一致 精准理解,镜头、文字、动作,理解更准、生成更稳 大片质感,影视级画面和特效一键直出 Vidu 提示词指南: 如何使用“文生视频”: 如何使用“图生视频(用作起始帧)”: 如何使用“参考人物角色生成视频”: PixVerse V2: 单个视频生成(8s):8s 的视频生成需要花费 30Credits,5s 的视频生成需要花费 15Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 文字生成视频的 AI 产品: Pika:一款非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,不过是收费的。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-02