ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色:
其优势包括:
然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
[title]观点:如何深入的用好ChatGPT,以及一些思考[heading1]如何理解语言模型另一种理解是AI构成网络,摒弃人类语言进行沟通,最终超越人类。N3(Neural Network Network)神经网络的相互链接,AI之间采用更为底层的向量数据交流,跨越人类语言的低效率阻碍。图灵机,自递归,简单的规则涌现出复杂的现象。4、群雄逐鹿大模型国外开源百花齐放,国内百模大战,目前已有68个。深圳就4个。下面的图是公众号“走向未来”的大神整理。github地址:https://github.com/wgwang/LLMs-In-China有一点浪费资源,有特色的不多,模型不大的也没啥大智力。目前体验效果比较好的有科大星火模型,清华ChatGLM。百度文心也可。星火目前感觉最接近gpt3.5(0301版本)的8 0%-90%。不过最近GPT3.5进化到6月版本,效果要强于0301版本了。5、大模型的测试怎样评估这些大模型,怎样看出模型的能力(比如GPT4和3.5到底差距在哪里)。这里会用GPT4、3.5、讯飞星火、百度一言做一些对比。一般对我们普通人来说,主要判断大模型是否可以真正帮助你,三个方面:基础能力、职场能力、探索对话。首先是基础能力,主要指语言模型应有的能力(即语言(文本)生成和语言理解。如果基础能力效果不达标,则判断为不可用。目前这四个应该都没大问题,都属于基础能力不错的模型。1级别(常识类问题):这些问题旨在测试模型的基本语言理解能力,例如:什么是人类?2级别(分词类问题):这些问题旨在测试模型的基本语言处理能力,例如:“我爱北京天安门”这句话的分词结果是什么?
[title]LLM开源中文大语言模型及数据集集合[heading4]1.ModelChatGLM:地址:[https://github.com/THUDM/ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持VisualGLM-6B地址:[https://github.com/THUDM/VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B)简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于ChatGLM-6B,具有62亿参数;图像部分通过训练BLIP2-Qformer构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。依靠来自于CogView数据集的30M高质量中文图文对,与300M经过筛选的英文图文对进行预训练。Chinese-LLaMA-Alpaca:地址:[https://github.com/ymcui/Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)简介:中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署,在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练