直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)

回答

以下是根据您提供的资料进行的汇总评述:

一、收集资料的情况

  1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。
  2. 数量情况:共收集到 3 份相关资料。

二、资料分类及专家观点

  1. 关于律师如何写好提示词用好 AI

    • 观点:强调结构化内容组织、规定概述-内容解读-结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。
    • 结论:通过多种方式提升文章的专业性和针对性。
    • 思路:从标题、文章结构等方面进行规划。
    • 方案:按照特定的结构和要求进行写作。
  2. 基于频谱图的音乐录音中自动调谐人声检测

    • 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。
    • 结论:所提方法在检测上表现出较高的精确度和准确率。
    • 思路:包括音频预处理、特征提取和分类等步骤。
    • 方案:创建新数据集,进行全面评估。
  3. 文生图/文生视频技术发展路径与应用场景

    • 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。
    • 结论:揭示技术的优势、局限性和未来发展方向。
    • 思路:探讨技术在实际应用中的潜力和挑战。
    • 方案:预测未来发展趋势,提供全面深入的视角。

三、综合性评述

当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。

优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。

未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

陶力文律师:拘灵遣将|不会写Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好AI这件事

(3)结构化内容组织:使用编号、子标题和列表来组织文章,使内容条理清晰,易于读者理解。(4)规定概述-内容解读-结语结构:围绕主题展开讨论,首先概述规定内容,然后逐条解读具体内容,并以结语结束。(5)案例和挑战的结合:通过引入实际案例和潜在挑战,增强论点的说服力,并提供实用的解决方案。(6)结合法规和实际操作:通过引入法规内容和实际操作案例,提供详细的解释和建议(7)商业术语的使用:在写作中融入行业特定的术语和概念,确保内容的专业性和针对性。本文中你应当注意使用餐饮行业的商业术语。【语言风格】可以自己定义,当然你也可以写一篇根据文章生成对应语言风格关键词的灵机符箓,然后再让AI去干。3.输出的文章结构:(1)标题:开门见山、切中要害,用疑问句引起目标群体悬念;(2)第一部分:说清楚本文要解决的问题是什么,问题的背景是什么,这个问题可能导致哪些损失;(3)第二部分:以一个案例引入,这个案例改写自【基础材料】的【类案参考】部分,需要写清楚案号、案件事实经过、法院裁判结果、法院作出这一裁判结果的关键依据和其他与文章有关的要点;(4)第三部分:对案例进行进一步的分析,写明需要注意的关键点,分析可以改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。(5)第四部分:给出具体的操作建议,应分为:事前应注意事项;事中需要注意留存的证据;事后可以采取的补救措施,三个部分;每个部分分别给出三条清晰具体的建议。

AI 音乐 | 3.11 资讯

论文:https://arxiv.org/abs/2403.05380在多媒体内容的伪造检测领域,音频伪造的自动化检测尤为重要。音乐产业和听众对声乐表演的真实性和艺术完整性的关注日益增加,这促使了对自动调音技术影响的深入研究。本研究聚焦于音乐中人声音高的自动调音检测,旨在通过技术手段揭示音乐作品中的自动调音痕迹。本研究提出了一种数据驱动的自动调音检测方法,包括音频预处理、特征提取和分类三个主要步骤。通过分离声乐部分并将其分割成固定大小的片段,我们利用mel频谱图来捕捉音频信号中的关键频率信息。特征提取阶段采用卷积神经网络(CNN)架构,而分类则通过二元分类器实现。为了提高模型的收敛速度,我们采用了半硬三元组选择方法。由于缺乏现成的包含自动调音音乐的数据集,我们基于VocalSet和Musdb18数据集创建了一个新的数据集。该数据集包含了经过自动调音处理的声乐片段和相应的原始录音,以及与伴奏重新组合的自动调音歌曲,以模拟真实世界中的场景。我们对所提出的自动调音检测方法进行了全面评估。实验结果表明,与Rawnet2相比,我们的方法在10秒音频片段的检测上表现出更高的精确度和准确率。此外,我们还评估了模型在歌曲级别的检测性能,以及在面对MP3压缩和随机处理等后处理技术时的鲁棒性。本研究在自动调音检测领域迈出了重要一步,尽管存在局限性,如数据集中缺乏专业自动调音样本,但我们的方法已经证明了其在音乐伪造检测中的潜力。未来的研究将致力于纳入更多类型的自动调音样本,以进一步提高检测模型的泛化能力。

质朴发言:一文纵览文生图/文生视频技术发展路径与应用场景|Z 研究第 1 期

原文链接:https://mp.weixin.qq.com/s/pOLIf6JVQ_b8v3T6LcA7Fg来源:质朴发言发文时间:2024.01.19人工智能技术的进步为各行各业带来了革命性的变化,尤其是在图像生成领域。近年来,文生图/文生视频技术的发展已成为计算机视觉和人工智能研究领域的热点。首先,我们在这份研究报告中从横向和纵向两个维度梳理了文生图技术的发展脉络,重点分析了四个主流路径:基于GAN的方法、基于VAE的架构、Diffusion Model,以及自回归模型。每种技术都有其独特的优势和局限性,它们不仅反映了人工智能领域的快速发展,而且揭示了未来技术创新的可能方向。在此基础之上,本报告还梳理了基于文生图技术成熟的文生视频技术的发展脉络。此外,我们在报告中详细分析了这些模型的核心原理和技术特点。例如,GAN通过生成器和判别器之间的对抗学习来生成图像,而VAE则利用编码器和解码器来学习数据的潜在表示。在介绍了这些基本概念之后,报告转向更先进的技术,如Diffusion Model通过逐步去除加入数据的噪声来重建图像;自回归模型则通过学习数据的序列依赖性来生成图像等。同时,我们探讨了这些技术的科学基础,还着眼于它们在实际应用中的潜力和挑战。从个人艺术创作到商业设计,从教育工具到社交媒体内容制作,文生图技术正逐渐改变我们创造和消费视觉内容的方式。最后,我们预测了文生图和文生视频技术的未来发展趋势,包括多模态学习的整合和新的应用场景的探索。综上,本报告旨在为所有关心大模型事业的伙伴,提供一个全面而深入的视角,以理解文生图和文生视频技术的发展历程、现状及未来趋势。🌊

其他人在问
AI 辅助信息收集与分析
以下是关于 AI 辅助信息收集与分析的相关内容: 利用 AI 辅助写作课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。需记住,AI 是辅助,不能替代研究者的专业判断和创造性思维,要保持批判性思维,确保研究质量和学术诚信。 在制定和优化 SOP 方面,AI 助手能发挥重要作用: 1. 数据收集与分析:帮助收集和分析工作数据,找出瓶颈和问题,提出改进建议以优化流程。 2. 自动化流程:通过 RPA 技术自动化重复性高、标准化强的工作流程,提高效率。 3. 实时监控与反馈:实时监控工作流程,及时发现问题并反馈,以便及时调整。 人工智能在汽车行业的应用案例: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能,预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等,允许语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-10-29
资讯收集机器人
以下是关于资讯收集机器人的相关信息: 上周使用 GPT4 创建了一个信息收集机器人,用于监控指定推特账户,将信息交给 ChatGPT 翻译并总结,然后发送到 Discord 指定频道。具体步骤包括:简单说明需求让 GPT4 给出建议,获取更具体可执行方法,用 zapier 创建机器人,触发器选择推特 APP 并绑定账号,将信息发送给 ChatGPT 并设置处理方式和输出格式,最后链接 Discord 创建机器人并选择发送频道和信息。详细内容和 zapier 机器人模板可参考:https://op7418.zhubai.love/posts/2251721691841511424 。 本地部署资讯问答机器人可通过 Langchain + Ollama + RSSHub 实现 RAG,包括加载所需库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型);从订阅源获取内容,通过函数从指定 RSS 订阅 url 提取内容并处理;为文档内容生成向量,使用文本向量模型 bgem3(https://huggingface.co/BAAI/bgem3),从 hf 下载好模型后通过函数利用 FAISS 创建高效向量存储。 介绍了一些大模型,如 Google 推出的 Gemma(下载的是 7B 模型)、欧洲法国 Mistral AI 团队推出的 Mistral(7B 模型)和 Mixtral(87B 的 MoE 模型)、阿里巴巴推出的 Qwen(通义千问,7B 模型)。 强调了 RSS 作为数据源的作用,虽然在日常获取资讯时手机 APP 基本够用,但对于特定需求从某些网站获取最新通知或相关信息,如获取 https://openai.com/blog 的最新更新、https://www.producthunt.com 每天的热门产品、https://github.com/trending 每天的热门开源项目等,RSS 仍有其优势。
2024-10-09
构建新闻收集的 Agent 工具
以下是构建新闻收集的 Agent 工具的相关内容: 1. 可以通过 Coze 建立定时任务,执行工作流二,并添加分析文章和搜索文章等能力,变成一个消息情报官的 Agent,能够获得想要的领域或行业情报,还能深入挖掘相关情报信息。然后发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等平台即可使用。可以构建多个分身,收集整理不同领域和行业的情报信息。 2. 最近 wiseflow 首席情报官很火,但几乎没有教程和搭建成功案例,其代码存在问题且依赖收费的 OpenAI API。可行的 Free 方案是通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。 3. 可以通过读 SQLiteDB 或者获取 RSS XML 页面 http://127.0.0.1:4000/feeds/all.atom 来获取更新的公众号。在公众号订阅不多时,建议使用分析 XML 页面。由于本地部署无法直接将文章同步到 Coze,可以选择使用多维表格及飞书机器人 API 的方式来实现中间数据的传递。在多维表格中设置状态转换,以了解文章是否已被解读和推送。
2024-09-06
有什么链接收集了常用、效果好的各个方向或者是领域的具体提示词吗
以下是一些收集了常用、效果好的各个方向或者领域的具体提示词的链接: 另外,按照对话次数统计的 TOP100 榜单对应的链接已发布在 BeBeGPTs 上,可通过原文链接访问,网址为:glbai.com。在法律领域,也有一些常用的 Prompt 场景,例如案例检索,最好使用法律行业垂类的 AI 产品。以下是一些案例检索的 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。
2024-08-24
收集用户评论相关AI
以下是为您收集的与用户评论相关的 AI 信息: 1. Looria:官网为 https://looria.com/ ,是一个帮助用户找到符合需求和预算的最佳产品的平台。它收集来自最值得信赖的来源的评论,过滤出伪造的评论,并对结果进行总结,以便用户做出更明智的购买决策。 2. 享受型虚拟陪伴中的主动评论:对于普通用户,互联网产品虽分发大量信息但无法给予足够关注。主动评论是 AI 对用户行为的高密度反馈,哪怕只是一句吐槽,也会有很多不同性格的人来评论,被关注本身就是一种安慰。其畅想包括:人的关注极度稀缺,AI 的关注极度充足;人都喜欢别人主动;如果被著名或喜爱的 AI 角色关注;大众对善意谎言和残酷真相的选择;获得远远大于付出。 3. AI Reviews:官网链接为 https://embedsocial.com/aireviews/ ,是一个动态的评论管理工具,由人工智能驱动,能使企业收集更多评论,高效回复数百个评论,并创建定制的评论小部件,旨在提升在线声誉。
2024-08-11
如何用ai收集目标招聘岗位
以下是根据你的需求,为你生成的文章: 如何用 AI 收集目标招聘岗位 在当今数字化的时代,人工智能(AI)在招聘领域的应用越来越广泛。利用 AI 技术可以更高效地收集和分析招聘岗位信息,为求职者和招聘者提供更好的服务。下面介绍几种利用 AI 收集目标招聘岗位的方法: 1. 使用 Python selenium 库对 URL 逐一爬虫,收集招聘要求信息:这是一种比较传统的方法,需要一定的编程基础。使用 Python 的 selenium 库可以模拟浏览器行为,对招聘网站进行自动化爬取,并提取出招聘岗位的相关信息,如职位名称、薪资范围、工作地点、学历要求、工作经验等。这种方法可以快速获取大量招聘岗位信息,但需要注意网站的反爬虫机制,避免被封禁。 2. 在猎聘网上搜索 15 个感兴趣的关键词,通过 instant data scraper 收集职位信息:Instant Data Scraper 是一款浏览器扩展程序,可以在浏览器中快速提取网页上的数据。在猎聘网上搜索 15 个感兴趣的关键词,然后使用 Instant Data Scraper 提取出相关职位信息,包括职位名称、公司名称、工作地点、薪资范围等。这种方法操作简单,但需要注意关键词的选择,以确保收集到的职位信息与目标岗位相关。 总之,利用 AI 收集目标招聘岗位需要结合具体的需求和场景选择合适的方法。在收集过程中,需要注意遵守法律法规和网站规定,避免过度收集和滥用用户信息。同时,还需要对收集到的信息进行整理和分析,以便更好地为求职者和招聘者提供服务。
2024-05-13
AI村民构建的AI小镇资料
以下是关于 AI 小镇“离谱村”的相关资料: 离谱村之歌: 村民阿飞创作的村歌,歌词中描绘了离谱村村民不种田,只搞 AI 的狂欢。代码是他们的麦田,数据是他们的酒,机器学习、深度神经等技术他们玩得转,算法优化、模型训练如同游戏般简单。从早到晚只有键盘的敲击声,AI 的梦想正在成形。村里有智能机器人、自动车等未来元素,村民用 AI 种菜、放牛,智能管家解决烦恼。离谱村的夜因 AI 灯光而明亮,这里的故事将传遍每个角落,其 AI 成果让世界震撼。 离谱村的共创故事: 离谱村是由 WaytoAGI 孵化的 900 人共创项目,目前是用飞书做整体协同。一部完全由 AI 制作完成的短片《离谱村的故事》获得了 MIT 电影黑客松的 Best Video 第一名。其中的配音是用 Audiobox 捏出来的,为保证离谱熊声线的一致性,还用了 GPTsovits 对其声音做了专属训练。有专门的离谱村百科和村民目录用于素材管理,接下来会引入离谱家人的共创内容。 离谱村介绍: WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,涵盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,有 1000 万的访问量。离谱村是 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的样子,它不仅是物理空间,更是灵魂的避风港,激励着人们发挥想象力创造独特生活方式。
2024-11-13
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
智能体工作流相关的资料全给我
以下是关于智能体工作流的相关资料: 生物医药小助手: 技术实现原理:由 1 个工作流和 6 个数据库实现。工作流设计简单,包括一个输入,对接知识库,搭载豆包 function call 大模型,最后输出。相对有难度的是收集和校对知识库的资料。在医疗领域,为保证回答准确性,提示词约定回答只能来自知识库。 商业化场景:能替代大部分传统医药数据库商业化场景,如医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。 竖起耳朵听: 插件:像工具箱,可放一个或多个 API,平台有多种插件,也可自制。 工作流:像可视化拼图游戏,由多个小块块(节点)组成,可组合插件、大语言模型、代码块等创造复杂稳定业务流程。不同小块块可能需要不同信息,包括引用前面小块块信息或自行设定信息。此智能体用到 5 个小块块。 【图像流】用 Coze 的工作流创建随便虐的室内设计师: 创建 Bot:打开 Coze 官网 https://www.coze.cn/home 。 图像工作流:包括图像流配置界面、分类(智能生成、智能编辑、基础编辑)、空间风格化插件(含参数如 image_url、Strength、Style、user_prompt)、工作流流程(按构架配置,调试效果,有毛坯房测试用例)、开始节点解析(对应配置三项内容,提示词优化)、人设和回复逻辑。发布后机器人可出图。
2024-10-29
AI 搜索资料 工具
以下是关于 AI 搜索资料工具的相关信息: 1. 利用 AI 打造爆款公众号文章:在搜索框中输入具体的 Prompt 来快速定位相关资讯,如“查找关于 OpenAI 对马斯克言论回应的博客文章”。通过 AI 工具如 Perplexity.AI、微软的 Bing 搜索引擎等获取搜索结果,这些工具的结果包含大量引用和来源链接,可点击回答内容下方的拷贝按钮获取。 2. 开搜 AI 搜索:这是一款免费无广告、直达结果的面向大众的搜索工具。它能帮助在校学生快速搜集学术资料、智能总结关键信息以撰写论文和报告,并支持查看来源出处;能协助教育教师群体获取教学资源、自动生成教案和课题研究报告;能助力职场办公人群高效查找工作所需信息、简化文案撰写等工作;能为学术研究人员提供行业分析、整合和总结大量数据形成研究报告。链接:https://kaisouai.com/ 3. 能联网检索的 AI:存在此类 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如,ChatGPT Plus 用户可开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,可指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 能简化在线查询和浏览活动;还有 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保持用户数据的私密性。 需要注意的是,部分 AI 工具在使用时可能存在一定限制,如 Kimi 的阅读能力有限,可能无法一次性处理大量资讯或读取某些网站内容,此时可分批次提供资料。同时,对于 AI 生成的内容请仔细甄别。
2024-10-24
有没有什么资料可以快速了解AI
以下是一些可以帮助您快速了解 AI 的资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 在不同领域的应用和研究成果。 2. 专业书籍:查找与 AI 相关的专业书籍,深入学习 AI 的理论和应用案例。 3. 在线课程和教程:在 Coursera、edX、Udacity 等平台参加 AI 相关课程,在 YouTube 等视频平台查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 等相关论坛和社区,与专业人士交流学习。 5. 开源项目和代码库:在 GitHub 等开源平台探索 AI 相关项目,了解其应用和实现。 6. 企业案例研究:研究如 Autodesk、Siemens 等公司在 AI 领域的应用案例,了解实际效果。 对于入门经典必读,您可以参考作者为 的相关内容,原文地址为 https://a16z.com/2023/05/25/aicanon/ 。 如果您不会代码,想在 20 分钟上手 Python + AI,您可以先了解以下基础内容: AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义及相互关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉线性回归、决策树、支持向量机(SVM)等常用算法。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:掌握如何评估模型性能,如交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-10-22
有没有 AI bot 做意图识别的资料
以下是关于 AI bot 做意图识别的资料: 尽管意图识别在自然语言处理领域已被广泛讨论,且通过各种小规模模型处理过此任务,但随着大型模型兴起,尤其是用作智能体的 Brain 模块时,它们在意图识别方面承担了主要工作。 意图识别的定义是:当用户输入指令,指令通过感知模块传递到 Brain 模块,Brain 模块需对指令做出反应,本质上是一种分类任务,即识别并区分用户的具体意图。在单一智能体架构或复杂的多智能体系统中,意图识别都至关重要。 通过一些常见的例子,如 Siri、小爱同学及其他手机品牌搭载的智能助手,当向它们发出指令时能做出相应反应,此过程中意图识别起到关键作用。大型模型执行意图识别任务时,主要基于前期通过大量数据训练得到的模型,可能是专门针对意图识别任务训练的大型模型,也可能是通过在特定任务中微调来优化的模型,通过微调能使模型更好地适应特定领域的任务需求。
2024-10-21
我想生成有具体建筑的图像设计,如夫子庙,而不是古风建筑,怎么表述,让AI理解
要让 AI 准确理解您想要生成具有特定建筑(如夫子庙)的图像设计,而非一般的古风建筑,您可以这样表述:“生成一幅清晰、逼真的夫子庙图像设计,展现其独特的建筑风格和细节,包括庙宇的屋顶结构、墙壁装饰、门窗样式等,要突出夫子庙的特色元素,如特定的牌匾、雕刻、飞檐等,背景可以是适当的自然景观或周边的街道场景。”
2024-11-11
我是一名企业任用岗人,需要作一版关于AI在任用管理(包括员工入职管理,员工异动管理,员工转正管理,员工离职管理,员工合同续签管理)工作中的成果展示,进行简易的分享;我不知道如何分享,且分享的表述如何简洁而不失重点。
以下是一些 AI 在不同工作场景中的应用案例,可作为您在任用管理工作成果展示中的参考: 营销:定制营销报告,涵盖汇报对象身份、销售数据、财务报告、市场分析、客户反馈、营销效果评估等方面。 办公:高效做 PPT,利用 ChatGPT 生成 Markdown 语法内容,再借助 MindShow 转换为精美 PPT;编写 Excel 公式,通过交互和迭代获取准确公式;写邮件,满足特定需求。 办公:会议总结,包括会议主题、参与人员、讨论议题、关键观点等要素。 项目管理:通过创建和维护跨团队项目协作计划,明确员工角色和职责。 销售:话术总结优缺点,考虑产品特点、服务优势、目标客户需求等因素;定制销售解决方案,综合企业产品和服务等内容。 客服:定制客服话术,涵盖产品知识、售后服务等 13 个关键词库。 HR:团队绩效管理,根据往期数据分析员工绩效排名并给出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具辅助求职者。 科学:研制采摘机器人,如荷兰代尔夫特大学和瑞士洛桑联邦理工学院科学家的探索;设计航天器零部件,提高设计效率和创新度。
2024-10-16
我想让AI帮我润色一下文章讨论部分的一个段落,这个段落现在非常零碎,语句凌乱,句子表述杂乱无章,不符合科研论文用语习惯,我应该如何发出命令
如果您想让 AI 帮您润色科研论文中讨论部分的一个段落,您可以这样发出命令:首先,清晰地向 AI 描述段落的具体问题,比如指出语句零碎、表述杂乱无章等情况。然后,明确您的需求,例如要求 AI 按照科研论文的用语习惯对段落进行逻辑梳理、语句优化和词汇精准化处理,使段落表达清晰、连贯、准确且符合学术规范。您可以这样表述:“请帮我优化以下这段讨论部分的内容,它目前语句零碎、表述混乱,不符合科研论文的用语习惯。请帮我重新组织语言,使其逻辑清晰、表达准确,符合科研论文的规范要求。”
2024-09-22