直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我是一个AI小白,请帮我介绍一下智谱清言、扣子、kimi这三款AI产品的能力优劣势

回答

以下是智谱清言、扣子、kimi 这三款 AI 产品的能力优劣势介绍:

智谱清言: 优势:

  • 背后技术源自清华大学研发团队的科研成果转化,模型质量出色。
  • 以 ChatGPT 为对标打造用户体验,是国内首批开放智能体应用的公司之一。
  • 在逻辑推理和处理复杂提示词方面表现明显优势,能出色处理需要深度思考和分析的任务。

劣势:暂未提及。

Kimi: 优势:

  • 具有超长上下文能力,最初支持 20 万字,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势。

劣势:

  • 文字生成和语义理解能力可能不如国内其他产品好。
  • 文字生成质量方面有待提升。
  • 不支持用户自定义智能体。

关于扣子,文中未提及相关内容,无法为您介绍其能力优劣势。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

给小白的AI产品推荐

接下来,让我们来谈谈智谱清言。在中国AI领域,智谱AI的模型可以说是开创性的(22年就和清华一起自研了GLM130B)。这主要归功于其背后的技术,源自清华大学研发团队的科研成果转化。从模型质量来看,智谱AI的表现相当出色。在产品设计方面,智谱AI明显以ChatGPT为对标,努力打造类似的用户体验。值得一提的是,智谱AI是国内首批开放智能体应用的AI公司之一。这意味着他们在智能体开发和模型优化方面已经积累了丰富的经验和技术。特别是在逻辑推理和处理复杂提示词方面,智谱AI表现出了明显的优势,这使得它在处理需要深度思考和分析的任务时表现出色。

张翼然:用AI为教师减负(3H).pdf

Kimi.ai4.说明:提供更多关于任务和要求的详细具体上下文信息。3.学生能掌握课文中的重点词汇和句式,提高文言文阅读能力。3.让学生了解阿房宫的历史,理解作者借古讽今的写作3、整体感知,把握作者观点(第二课时)2、涵养济世补天的精神品格3、理解文章重要的文言文字词和语法现象。3、了解杜牧的创作主张与情怀清华的智谱清言Chatglm.cn清华的智谱清言Chatglm.cn月之暗面的Kimi.ai助理职责任务监管沟通指导负责任人机智慧学习协作框架•Living & Working/Teaching & Learning with•GenerativeAI把AI想象成您的助理/伙伴/下属Co-Pilot

给小白的AI产品推荐

谈到聊天对话类的AI产品,我首推的是Kimi。Kimi最显著的特点就是它的超长上下文能力,这一特性在国内的AI聊天对话产品中可以说是独树一帜的。Kimi最初支持20万字的上下文,而现在已经提升到了惊人的200万字。这对于需要处理长文本或大量信息的任务来说是一个巨大的优势。因此,如果你从事文案工作,特别是需要处理大量文字或文件的工作,我强烈推荐使用Kimi。它的超长上下文能力可以帮助你更有效地处理和分析大量信息,提高工作效率。对于需要长期记忆或需要参考大量背景信息的任务,Kimi的这一特性尤其有用。但是,Kimi也有一些不足之处。经过使用,我发现它在文字生成和语义理解、和文字生成质量方面的能力可能不如国内其它产品好,并且它不支持用户自定义智能体。但尽管如此,我仍然强烈推荐Kimi给刚入门AI的朋友们。

其他人在问
制作图片的AI工具,名字好像叫comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出并分享,报错时能清晰定位错误。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要清晰的逻辑。 2. 生态不如 webui 丰富,但有针对其开发的有趣插件。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,有人认为如果 contornet 让 AI 绘画从玩具变成工具,那 ComfyUI 就是制作工具的工具。同时,藏师傅介绍了用 ComfyUI 三步制作任意公司周边图片的流程,整个流程分为获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 ComfyUI 工作生成。
2024-11-23
最新的AI资讯
以下是为您提供的最新 AI 资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: 2024 人工智能报告方面: 全球芯片出口管制下,中国仍成重要市场。美国商务部长吉娜·雷蒙多警告英伟达,中国在美芯片制造商中所占的份额正在减少。字节跳动通过美国的甲骨文租用 NVIDIA H100 访问权限,而阿里巴巴和腾讯则与 NVIDIA 就在美国建立自己的数据中心进行谈判。与此同时,谷歌和微软直接向中国大型企业推销他们的云服务。 模型变得更便宜了。以前认为提供强大模型的成本过高,但现在提供这些模型的推断成本正在下降。OpenAI 更达到 100 倍下降!Google Gemini 生产了一种具有很强竞争力的定价系列!Gemini 1.5 Pro 和 1.5 Flash 的价格在推出后几个月内下降了 64%86%,而性能强劲,例如 Flash8B 比 1.5 Flash 贵 50%,但在许多基准测试中表现相当。注意:价格适用于<128K 令牌提示和输出。检索日期为 2024 年 10 月 4 日。考虑到计算成本很高,模型构建者越来越依赖与大型科技公司建立合作伙伴关系。反垄断监管机构担心这将进一步巩固现有公司的地位。
2024-11-23
那个文生视频或图生视频的AI可以生成融合变化的效果
以下是关于文生视频或图生视频的 AI 生成融合变化效果的相关信息: 在人工智能技术迅速发展的当下,AI“词生卡”技术兴起,它将文字描述转化为视觉图像,重塑了创意产业格局。AI 的多模态输出能力已基本成型,包括文生文、文生图、文生码、文生视频、图生视频等,但大多在某个维度能力强,跨界融合还不够。 从生成方式分类,AI 视频生成包含: 1. 文生视频、图生视频,如 Runway、Pika labs、SD + Deforum、SD + Infinite zoom、SD + AnimateDiff、Warpfusion、Stability Animation 等。 一些热门产品如 Luma AI,其 Dream Machine 目前支持 txt2vid 文生视频和 img2vid 图生视频两种能力,8 月底最新发布的 Dream Machine 1.5 增强了提示词理解能力和视频生成能力。Luma AI 的 img2vid 生成效果在多方面表现出色,如生成时长较长、运动幅度大、能产生相机多角度位移、运动过程一致性保持较好、分辨率高且有效改善模糊感等。
2024-11-23
怎么用ai制作由人变成动物的视频
以下是使用 AI 制作由人变成动物视频的方法: 一、创建视频内容 1. 准备内容 先准备一段视频中播放的内容文字,可以是产品介绍、课程讲解、游戏攻略等任何您希望推广让大家了解的文字。 您也可以利用 AI 来生成这段文字。 2. 制作视频 使用剪映 App 对视频进行简单处理。电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。 在界面右侧将准备好的文字内容替换默认文本内容。 二、生成数字人 1. 生成数字人 在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费且适合的数字人形象,如“婉婉青春”。 选择数字人形象时,软件会播放其声音,可判断是否需要,点击右下角“添加数字人”,软件会根据提供的内容生成对应音视频并添加到当前视频轨道中。 左下角会提示渲染完成时间,完成后可点击预览按钮查看效果。 2. 增加背景图片 删除先前导入的文本内容。 点击左上角“媒体”菜单,点击“导入”按钮,选择本地一张图片上传。 点击图片右下角的加号将图片添加到视频轨道上(会覆盖数字人)。 点击轨道最右侧的竖线,向右拖拽直到视频最后,使图片在整个视频播放时都显示。 选中背景图片所在轨道,拖动图片的角将其放大到适合尺寸,并将数字人拖动到合适位置。 此外,如果您想创作一个生物融合成新物种的视频,例如猪和老鹰融合成一个新的物种,以 GPT4 为例的制作教程如下: 1. 故事情节的构思 构思一个吸引人的故事情节,比如新物种的起源故事,结合猪和老鹰的特点以及这种融合带来的独特能力和挑战,考虑添加神秘或奇幻元素增强阴暗风格。 2. 视觉效果的设计 使用 3D 建模和特效技术创造出既霸气又具有阴暗风格的新物种形象,高质量的视觉效果和流畅的动画能吸引更多观众并提高视频的分享率。 3. 音乐和声音设计 配置适当的背景音乐和声效,以增强视频的氛围,选择能激起观众情绪的音乐和声音效果,让视频更加引人入胜。 4. 社交媒体互动
2024-11-23
AI分镜
以下是关于《李清照》AI 视频创作的分镜内容: |分镜|子分镜|分镜主视觉|配音|角色|配音|画面| |||||||| |8|0801<br>0802|嗯~谁在叫我<br>小姑娘,你从哪里来?你叫什么名字呀?|王维||| |9|0901 疑惑<br>0902 诗文|疑惑自言自语<br>疑惑的表情<br>看到明月松间照,清泉石上流惊喜|我叫什么名字呢?(疑惑)<br>哦~(惊讶)<br>李清照吟诵:明月松间照,清泉石上流。|少年李清照|| |10|1001 惊喜<br>1002 照清高亮|李清照灵机一动<br>墙上诗:明月松间照,清泉石上流。照和清高亮显示|背景音效:灵机一动|||| |11|11 得意|李清照脸部特写,惊喜表情|我叫李清照(高兴)|少年李清照|| |12|12 王维沉思|王维沉思|李清照~李清照,好名字、好名字|王维|| |13|13 夜景|明月下溪水潺潺|王维吟诵:明月松间照,清泉石上流。|王维|| |20|20|画面穿越到当代写字楼办公室|忙乱和电话铃声|背景声|| |21|21|面对电脑的李清照一脸茫然|||| |22|22|旁边两个同事聊天|你们打算什么时间要孩子?<br>要孩子,要什么孩子,我们是丁克家庭。|同事甲<br>同事乙|| |23|23|李清照满脑子疑惑,丁克是什么意思|疑问背景音|背景声|| |24|24|李清照查询丁克的意思,发现是不要孩子的家庭。|||| |25|25|旁边两个同事聊天|那你不打算结婚吗?<br>我才 30 岁,结哪门子婚,我的环游世界梦想还没有实现呢|同事甲<br>同事乙|| |26|26|李清照满脑子疑惑,为什么可以不结婚?怎么生活?|疑问背景音|背景声|| |27|27|李清照开始查阅资料|清照~清照~你不下班吗?<br>哦哦~我查点资料|同事甲<br>李清照|| |1||远景一个古装小女孩草丛中嬉戏|背景音乐:小女孩嬉戏声|||| |2|0201 欢快<br>0202 疑惑|李清照与蝴蝶对话:远景、特写|蝴蝶:你叫什么名字呀?(欢快)<br>李清照:嗯~嗯~我叫什么名字呢?(疑惑)|蝴蝶<br>少年李清照|| |3|0202 放大|李清照特写|||| |4|04 穿越唐代|李清照满是疑惑|画外音:这是什么地方?(疑惑)|少年李清照|| |5|《辋川别业》建筑|写有《辋川别业》的古代建筑|辋川别业、辋川别业,难到这是王维的住处!(恍然大悟)|少年李清照|| |6|06|《维摩诘诗集》特写|真的是王维(高兴)|少年李清照|| |7|07|李清照高兴奔向王维|王伯伯~王伯伯~(高兴)|少年李清照||
2024-11-23
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
通义千问和智谱清言对比
以下是通义千问和智谱清言的对比情况: 在对结构化 prompt 的测试中: 输入同样的 prompt 后,智谱清言的改写效果不错,能够理解 prompt,输出内容感觉良好,且认识到结构化 prompt 的重要性以及需要不断迭代优化。 通义千问的输入效果不错,能够一次输出,但输出的内容要差一些,需要提高。 在 Stepback prompting 评测中: 智谱清言的综合评分为 3 分,表现中规中矩。 通义千问的综合评分为 3.125 分,表现还算不错,只要内容上再提高一些,体验感和专业性会更好。 在小七姐的小样本测评中: 对于复杂提示词理解和执行的第一轮任务中,智谱清言首次回应初始化执行正常,但在生成内容时推理错误,且未回应特定问题,对于提示词中要求的逐步推理过程,可能因模型对已知问题答案生成的优先级高于用户设定的生成逻辑而未按步骤执行。 未提及通义千问在该轮任务中的具体表现。
2024-11-05
智谱清言主要用于什么
智谱清言是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。其具有以下特点和应用场景: 特点: 在工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但在代码能力上还有一定优化空间,知识百科与其他第一梯队模型相比稍显不足。 应用场景: 可应用的场景相对广泛。 根据 SuperCLUE 测评结果,优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上的效果会比较不错。 广告文案、文学写作方面也是一个很好的选择。 此外,智谱清言在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验,是国内首批开放智能体应用的 AI 公司之一,在逻辑推理和处理复杂提示词方面表现出了明显的优势。AutoGLM 目前还处于内测阶段,申请入口在智谱清言 APP 中,目前只能在安卓设备上使用,需要开启无障碍权限和悬浮球权限。
2024-11-05
智谱清言的开源大模型哪些种类
智谱清言的开源大模型种类包括: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。代码链接:、始智社区。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩优异。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。代码链接:。 此外,智谱清言是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上,推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。智谱清言在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体来看,智谱清言更擅长专业能力,但在代码能力上还有一定优化空间,知识百科与其他第一梯队模型相比稍显不足。综合来看,智谱清言是一个很有竞争力的大模型。可应用的场景相对广泛,根据 SuperCLUE 测评结果,优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。另外在较复杂推理应用上的效果会比较不错,在广告文案、文学写作方面也是一个很好的选择。
2024-11-04
智谱清言和通义哪个更强大
在不同的测评维度中,智谱清言和通义千问各有优势。 在多轮开放式问题基准 SuperCLUEOPEN 的胜率方面,智谱清言和通义千问 2.0 的胜率均超过 25%。 在工具使用能力的测评中,GPT4 Turbo 取得满分,国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内模型第一,通义千问 2.0 也有超过 70 分的表现。 在对结构化 prompt 的测试中,通义千问能够一次输出,但输出内容有待提高;智谱清言在经过改写 prompt 等操作后也有不错的表现。 总体而言,难以简单地判定智谱清言和通义千问哪个更强大,其表现会因具体的测评维度和任务而有所不同。
2024-11-03
关于kimi提问播客的提示词
以下是关于 Kimi 的相关提示词信息: 对于 Kimi Copilot 网页总结助手插件: 提示词包括:“你是一个擅长总结长文本的助手,能够总结用户给出的文本,并生成摘要。” 工作流程为:“让我们一步一步思考,阅读我提供的内容,并做出以下操作:一句话总结这篇文章,标题为‘概述’;总结文章内容并写成摘要,标题为‘摘要’;总是用中文回答;当你输出标题时,应该使用 markdown 格式。文章链接:https:// 。如果你无法访问这个链接,请根据下面的文本内容回答。” 文末的 ZIP 格式插件可能可以自定义提示词。 对于 Kimi chat: 输入 prompt 后很简洁。输入起诉状后,前面的回答温馨且专业,但存在一些问题,如主体缺少答辩人、引用废止的《合同法》等,总体能达到及格往上的成绩。输入应诉方案后,整体简洁明了但需继续细化,答辩策略对应答辩状,庭审准备和风险控制较抽象。 与智谱清言对比,智谱清言输入起诉状后的输出在主体等方面有其特点,输入“请输出应诉方案”后的输出在准备工作等方面表现良好。
2024-11-16
Kimi是什么AI
Kimi 是由 Moonshot AI 出品的一个 AI 会话助手和智能助手。 它具有以下特点和功能: 1. 具备读取网页内容的能力,并能在此基础上生成一定的内容,读取完毕会显示绿色标点作为提示。但阅读能力有一定限制,可能无法一次性处理大量资讯或某些网站内容,可分批次提供资料。 2. 可以整理资讯内容,并能将其转化为吸引人的公众号文章。 3. 是 ChatGPT 的国产平替,实际上手体验好,适合新手入门学习和体验 AI。 4. 不用科学上网、不用付费、支持实时联网。 5. 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得最好的 AI 产品。 6. 能一次搜索几十个数据来源,无广告,能定向指定搜索源,如小红书、学术搜索。 您可以通过以下链接使用: 网页端:https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term= 移动端 Android/ios:https://kimi.volctrack.com/a/E3w3Q1xa
2024-11-05
kimi探索版技术原理
Kimi 探索版的技术原理如下: 工作流方面:通过工作流输出的卡片绑定和多轮输出推动剧情发展,其中相对复杂的技术实现是工作流中嵌套的图像流。但此 bot 未涉及自有 plugin、数据库、用户状态、外部系统交互等技术组件。 模型选择:选用 kimi 的 32k 模型,可选模型有 GLM4、Moonshot、MinMax 和百川,不确定作者选定此模型的具体理由,个人倾向于通义,底模决定了 bot 的能力。 历史更新:2024 年 10 月 11 日,Kimi 和智谱同时发布了深度推理的功能。相关共学课程的课件和回放已发布。此外,还有关于转变对 AI 态度的相关论述,强调将 AI 作为协作伙伴,通过对话式编程提升工作效率,解锁其创造力。
2024-10-22
我该如何利用文心一言、kimi等已有的大语言模型去作个性化训练?
已有的大语言模型如文心一言、kimi 等通常不支持个人进行个性化训练。 大语言模型的相关知识包括: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域。 大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联。 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。 Fine tuning 是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 学习大型语言模型(LLM)的开发是一个系统性的过程,需要涵盖多个方面的知识和技能: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。 理解 Transformer 和 BERT 等模型原理,掌握相关论文。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用预训练框架,以及微调 LLM 模型进行特定任务迁移。 掌握 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。 进行 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态。 机器学习是人工智能的一个子领域,深度学习是机器学习的一个子领域,大语言模型是深度学习在自然语言处理领域的应用之一,具有生成式 AI 的特点。
2024-10-18