AGI(Artificial General Intelligence,通用人工智能)与 AI 的提法主要有以下不同:
在实际应用中,当前大多数的“AI 应用/AI 转型”还存在一些问题,如把 AI 套在现有流程上,讲“固化流程”“节约成本”的故事,这种做法在技术加速迭代的今天可能导致“做出来就是过时的”,剥夺企业主动进化的能力。我们应将 AI 的力量用于对未来业务的重新定义,就像电力发明时应从“电力能创造和满足什么新的需求”出发,而不是从“如何让电力赋能马车”出发。同时,Web3 和人工智能初创公司 AGII 获得了 1500 万美元融资,AGII 是一个 AI 驱动的平台,能为用户提供多种生成内容的功能。
AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。
[heading4]7月14日[content]https://agii.app/zhWeb3和人工智能初创公司AGII获得1500万美元融资AGII Web3和AI初创公司成功融资1500万美元。这笔投资证明了AGII在转变内容生成并为用户提供强大的AI驱动工具方面具有巨大潜力。AGII是一个AI驱动的平台,赋予用户轻松生成各个领域高质量内容的能力。通过利用先进的AI模型和一套直观的工具,AGII旨在简化内容创作过程,为用户提供无与伦比的灵活性、创造力和效率。AGII还宣布推出平台的测试版,以获取用户的反馈并调整其产品,确保满足用户的多样化需求。该平台提供一系列AI生成器和魔法工具,包括文本、图像、代码、聊天机器人、语音转文本和配音等功能,旨在帮助内容创作者、营销人员和企业以更短的时间创造引人入胜且有影响力的内容。
现在的AI不仅仅是流量密码,也是股价密码;于是,是个公司都会想方设法往AI上沾边。私下也有很多朋友问我:美妆/白酒/奢侈品如何联动AI?AI如何赋能农业/传统制造业?AI如何赋能HR/行政/采购/公关?……其实,大多数都有点难。因为AI也并不是万能的,以及我们和AGI还差的很远。像我去年12月份的文章[《AI原生公司|未来打工人》](http://mp.weixin.qq.com/s?__biz=MzkyMTY1MTM4Mw==&mid=2247483844&idx=1&sn=3adfc54f294c53fdf51105cdb4e23ec3&chksm=c181101cf6f6990af5116997115fdfcf95360bb55a14f05ea9aed00239c88dfb440d03055533&scene=21#wechat_redirect)写的,目前大多数的"AI应用/AI转型”还在走“数字化转型”的老路:把AI往现有流程上一套,还在讲“固化流程”、“节约成本”的故事。但在技术加速迭代的今天,这样做基本就等于“做出来就是过时的”:把企业的业务模式凝固在今天,同时又剥夺了企业主动进化的能力。现在这种情况下反映出来的,更多是人们对于AI的焦虑:所以才会希望AI拿来就能用,马上能起效果。但我们不能止于焦虑:AI的力量并不应该只用在现有业务流程的优化上,而更应该用在对于未来业务的重新定义之上。这才是“AI原生公司”应该的做法。就像在电力发明的时候,我们不应该从“如何让电力赋能马车”出发,而应该从“电力能创造和满足什么新的需求”出发。