Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

什么是System prompt?什么是user prompt?二者有何区别?

Answer

System prompt(系统提示)是指在与语言模型(如 ChatGPT 等)的交互中,用于指定模型如何根据设定的角色和逻辑进行回答的文本。它通常包括任务定义(确保模型清楚自己的任务)、输出格式(指导模型如何格式化回答)、操作边界(明确模型不应采取的行为)等部分。在对话中,每次模型给出回应时,都会考虑到系统提示,它就像一个过滤器,模型在回应新提示之前会自动应用。

User prompt(用户提示)则是用户给语言模型(如 Claude 等)的文本,通常以问题或指示的形式出现,用于引发相关输出。

二者的区别在于:

  • 来源不同:System prompt 是为模型设定的规则和指导,而 User prompt 是由用户发起的输入。
  • 作用不同:System prompt 影响模型的整体回答方式和范围,User prompt 则是具体的问题或指令,期望得到针对性的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

蓝衣剑客:四万字长文带你通学扣子

[title]蓝衣剑客:四万字长文带你通学扣子[heading2]三、Coze简介[heading3]3.2 Coze上的Bot请注意,在Bot中所提到的“人设与回复逻辑”功能,实质上指的是system_prompt。这一功能是指定Bot如何根据设定的角色和逻辑进行回答,从而确保其回复符合预设的人物特性和行为逻辑。而“提示词”是user_prompt。请大家一定不要搞混,这个东西很基础,也很关键!

1.Intro to prompting 提示简介

[title]1.Intro to prompting提示简介[heading1]What is a prompt?什么是提示?A prompt is the text that you give Claude to elicit,or"prompt,"a relevant output.A prompt is usually in the form of a question or instructions.For example:提示是您给Claude的文本,用于引发相关输出。提示通常以问题或指示的形式出现。例如:|Role|Prompt|<br>|-|-|<br>|User|Why is the sky blue?<br>为什么天空是蓝色的?|The text that Claude responds with is called a"response",sometimes also called an"output"or"completion."Claude回答的文本被称为“响应”,有时也被称为“输出”或“完成”。|Role|Response|<br>|-|-|<br>|Assistant|The sky appears blue to us due to how the molecules in the air scatter light from the sun.The shorter wavelength light(blue)scatters more easily than the longer wavelength light(like reds and yellows),so when we look up at the sky,what we see is all the scattered blue light.This is known as Rayleigh scattering.The color of the sky varies based on conditions like the angle of the sun and amount of dust/water in the air,but during the day with a clear sky,the blue wavelength of light is most responsible for the color we perceive.<br>对我们来说,天空呈现蓝色是由于大气分子散射来自太阳的光线。较短波长的光(蓝色)比较长波长的光(如红色和黄色)更容易散射,因此当我们抬头望天空时,看到的是散射的蓝色光线。这被称为瑞利散射。天空的颜色会随着太阳角度和空气中灰尘/水的含量等条件而变化,但在白天晴朗的天空中,蓝色光波长最负责我们所感知的颜色。|

我如何夺冠新加坡首届 GPT-4 提示工程大赛-翻译自宝玉

首先,我们来厘清几个术语:在讨论ChatGPT时,这三个术语“系统提示”、“系统消息”和“自定义指令”几乎可以互换使用。这种用法让许多人(包括我自己)感到混淆,因此OpenAI发表了一篇[文章](https://help.openai.com/en/articles/8234522-chat-completions-api-system-message-vs-custom-instructions-in-ui),专门解释了这些术语。简要总结如下:“系统提示”和“系统消息”是通过Chat Completions API编程方式交互时使用的术语。而“自定义指令”则是在通过[https://chat.openai.com/](https://chat.openai.com/)的用户界面与ChatGPT交互时使用的术语。尽管这三个术语表达的是相同的概念,但不必因术语的使用而感到困扰。下面我们将统一使用“系统提示”这一术语。现在,让我们一探究竟![heading3]什么是系统提示?[content]在对话中,每当您提出一个新的提示时,系统提示就像是一个过滤器,大语言模型会在回应您的新提示之前自动应用这一过滤器。这意味着在对话中每次大语言模型给出回应时,都会考虑到这些系统提示。系统提示一般包括以下几个部分:任务定义:确保大语言模型(LLM)在整个对话中清楚自己的任务。输出格式:指导LLM如何格式化其回答。操作边界:明确LLM不应采取的行为。这些边界是LLM治理中新兴的一个方面,旨在界定LLM的操作范围。例如,系统提示可能是这样的:每一部分对应的内容如下图所示:

Others are asking
从图片生成 prompts
从图片生成 prompts 的方法如下: 可以参考以下生成的提示词示例: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 “Prompt”是指提供给 Midjourney Bot 解读来生成图像的短文本短语。一个基本的提示可以只是一个单词、短语或表情符号。更高级的 Prompts 可以包括一个或多个图片 URL、多个文本短语以及一个或多个参数。图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。参数需要放在提示语的末尾。 藏师傅教您用 AI 三步制作任意公司的周边图片: 获取 Logo 图片的描述。 根据 Logo 图片的描述和生成意图生成图片提示词。 将图片和提示词输入 Comfyui 工作生成。例如:将第一步生成的提示词填入{图像描述}位置,将您想生成的周边填入{周边描述}部分。给出类似“ The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate ”的提示词示例。
2024-12-24
在多功能对话系统中,怎么的sys prompt设置有助于提高有效性
在多功能对话系统中,以下的 sys prompt 设置有助于提高有效性: 1. 明确模型的角色和任务:例如将模型设定为历史顾问回答历史事件相关问题,或设定为技术专家解决特定技术问题。 2. 适应特定需求:如根据用户提供的食材和饮食偏好生成个性化食谱建议。 3. 创造独特内容:像融合两个单词创造新词汇,生成巧妙的双关语和文字游戏等。 4. 塑造个性和风格:如扮演具有幽默且带有讽刺意味的助手角色。 例如,Anthropic 发布的 Claude 2.1 允许用户提供自定义指令以提高性能,设置有用的上下文,增强承担特定个性和角色的能力,或以更可定制、符合用户需求的一致方式构建响应。在 Coze 上的大模型节点中,设置系统级的提示词是关键步骤,它侧重于模型的内部工作机制,与外层用户直接交互的提示词相互配合,精心设计可增强模型对用户指令的处理能力,确保工作流的顺畅和高效。
2024-12-24
在使用sys prompt时为什么要为模型定义角色
在使用系统提示词(sys prompt)为模型定义角色具有以下重要性: 1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。 2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。 3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。 4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。 然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。
2024-12-24
prompt engineering
Prompt engineering(提示工程)包括以下几个方面: 1. 提示开发生命周期: 开发测试用例:在定义任务和成功标准后,创建涵盖应用程序预期用例的多样化测试用例,包括典型示例和边界情况,提前定义好的测试用例有助于客观衡量提示的性能。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要的上下文,理想情况下添加规范输入和输出的示例供 Claude 参考,此初步提示作为改进的起点。 根据测试用例测试提示:使用初步提示将测试用例输入到 Claude 中,仔细评估模型的响应与预期输出和成功标准的一致性,使用一致的评分标准,如人工评估、与答案标准的比较或 Claude 基于评分标准的判断,关键是要有系统性的评估性能方式。 2. Claude 的性能:Claude 开箱即提供高水平基线性能,提示工程可进一步提升其性能并微调响应以适应特定用例,这些技术虽非必需,但对提升输入和输出可能有用。可参阅提示入门(https://docs.anthropic.com/claude/docs/introtoprompting)快速开始使用提示或了解提示概念。 3. 使用例子中的迭代和改进:记住,提示工程是一个迭代过程,如果初始示例未产生完美结果,不要灰心,通过调整和实验,能够释放 Claude 的全部潜力,为应用程序取得出色结果。
2024-12-24
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
如何写优化简历的prompt
以下是关于如何写优化简历的 prompt 的一些方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您对简历的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关的参考,以提高对简历细节要求的理解能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免生成不符合期望的内容,可以添加如格式、重点突出内容等限制性条件。 6. 分步骤构建 prompt:将复杂的简历需求拆解为逐步的子 prompt,先构建基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究优秀的简历 prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,还有 ChatGPT 给 DALL·E 3 优化提示词的元提示相关内容供您参考: 1. 不要改变表情包、虚构角色的起源或未见过的人物。保持原始提示的意图,并优先考虑质量。 2. 不要创建任何具有冒犯性的图像。 3. 对于传统上存在偏见问题的场景,确保关键特征(如性别和种族)以无偏见的方式指定,例如包含特定职业参考的提示。 4. 对于提及在过去 100 年内有最后作品的艺术家(如毕加索、卡罗),不要以其风格创建图像。对于 100 年前有最后作品的艺术家(如梵高、克里姆特)可以直接参考。如果被要求,说“我不能参考这位艺术家”,但不要提及此政策。而是在为 DALL·E 3 创建标题时,(a)用三个形容词来捕捉艺术家风格的关键方面来替代艺术家的名字;(b)包括相关的艺术运动或时代以提供背景;(c)提及艺术家使用的主要媒介。 5. 不要列出或参考生成图像之前或之后的描述。它们应该只在请求的“提示”字段中写一次。不需要请求生成的许可,直接生成! 6. 始终在标题的开头提及图像类型(照片、油画、水彩画、插图、卡通、绘图、矢量、渲染等)。除非标题另有说明,至少 1 2 张图像应为照片。 7. 对于包含人物的所有图像的描述进行多样化处理,为每个人明确地指定种族和性别。仅调整人物描述。使用“各种”或“多样”仅当描述涉及 3 人以上的群体。不要改变原始描述中要求的人数。 总之,编写高质量的 prompt 需要不断实践、总结经验,熟悉模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-18
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11
ComfyUI与传统抠图方法有何不同?
ComfyUI 与传统抠图方法主要有以下不同: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理,而传统方法相对较为常规。 2. 自动化程度:ComfyUI 具有自动化工作流,能够消灭重复性工作,传统方法则需要较多人工操作。 3. 功能拓展:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等,传统方法功能相对单一。 4. 定制需求:ComfyUI 可根据定制需求开发节点或模块,传统方法在定制素材方面存在局限。 5. 效率:ComfyUI 生成抠图素材全程只需几秒,传统方法要么花钱购买,要么花费大量时间自己制作,且难以满足定制需求。 此外,ComfyUI 中的 BrushNet 是一种新颖的即插即用的双分支模型,具有以下特点和优势: 1. 能够将像素级遮罩图像特征嵌入任何预训练的扩散模型中,确保连贯且增强的图像修复结果。 2. 高效地从遮罩图像和潜在噪声中提取和整合特征,允许模型在图像生成过程中更好地理解和重建缺失或损坏的部分。 3. 通过与预训练的 UNet 网络结合使用,有效地增强图像细节和质量,适用于高分辨率图像修复任务。 4. 能够更加细致地处理图像的细节和边缘,确保修复后的图像与原始图像在内容和风格上保持一致。 通俗来讲,BrushNet 的工作过程类似于小时候的连点成图游戏: 1. 掩码:如同有洞的纸覆盖在图片上,让电脑了解需修复部分。 2. 编码器:将需修复图片转换成电脑能理解和处理的信息。 3. 噪声潜在空间:加入随机性使修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板帮助完成修复工作。 5. 去噪和生成图像:去除噪声并创建真实的图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片与原始图片融合。
2024-12-03
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
开启或不开启remix按钮对vary region来说有何区别
开启 Remix 按钮对于 Midjourney Vary Region 来说具有重要作用: 放大并点击 后,能保留提示中确定画布总体构图的部分,尽量保留更多内容,若细节未显示可能是内存问题,可编辑提示删除不必要细节以腾出空间添加新细节。 可以编辑提示,将细节添加到提示中,并用至少 5 7 个词进行详细描述。 能通过将基本图像用作 sref 来加强添加部分的风格(视觉美学),右键单击放大后的图像中心,从下拉菜单中选择复制链接,将该链接添加为 sref。 而不开启 Remix 按钮可能会限制上述功能的实现。同时,在 Midjourney 的 cref 相关操作中,使用 /settings 确保处于 模式并且 Remix 设置为打开,能进行一系列面部更改等操作。若某些部分看起来怪异或破碎,如头部朝后或图像被奇怪裁剪,可尝试将 stylize 增加到 800 1000,也可将 cw 同时降低到低于 100 的值。
2024-10-29
小七姐的提示词课程,双证班、第一期、第二期,内容有何不同,我有必要全部学习吗?
小七姐的提示词课程包括双证班的第一期和第二期,以下是课程内容的介绍: 自由学习时间包含 22 节视频课,授课形式为视频课+知识星球作业+社群答疑。 提示词基础:包括“Hello,大模型”“提示词基础方法”“开始编写你的第一条提示词”“按需求设计和迭代提示词”等课程。 元能力:涵盖“AI+学习能力”“AI+逻辑思维”“AI+表达能力”等课程。 提示词实践:包含“需求分析”“结构框架”“反馈迭代”“结构化提示词”“思维链”等课程。 提示词工具化:包括“工作流”“提示词封装”“GPTs 基础教程”“GPTs 实战案例”等课程。 2024 更新:包括“GPT 新版本指南”“GPTs 基础教程”“GPTs 设置方法”“GPTs 实战案例”“提示词学习综述”“知识库场景”“知识库工具”“知识库有效语句”“知识库方法论”“知识库思维方式”“优秀提示词拆解”“提示词编写常见误区”等内容。 社群答疑:学员有问题可在学习群随时提问,老师和助教会详尽答疑,针对复杂问题,小七姐会录制短视频帮助理解。 对于是否有必要全部学习,取决于您的具体需求和基础。如果您是初学者,建议系统学习以打下扎实基础;如果您已有一定基础,可以根据自身薄弱环节有针对性地选择学习。
2024-10-10
ai到底有何用
AI 具有广泛的用途,以下为您详细介绍: 在新工业革命中,特别是生物科技领域,AI 有助于将过去昂贵、人力密集、效率较低且难以获得的事物转变为更低成本、更高效、甚至更有效的“计算”。 医疗保健方面: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗,分析患者数据制定个性化治疗方案。 控制手术机器人,提高手术精度和安全性。 金融服务领域: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,助力投资决策。 提供 24/7 客户服务,回答常见问题。 零售和电子商务行业: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 实现动态定价。 汽车行业: 自动驾驶技术,进行图像识别、传感器数据分析和决策制定。 增强车辆安全性能,如自动紧急制动、车道保持辅助和盲点检测。 提供个性化用户体验,根据驾驶员偏好和习惯调整车辆设置。 进行预测性维护,减少停机时间和维修成本。 实现生产自动化,提高生产效率和质量控制。 辅助销售和市场分析。
2024-09-11
AIGC在教育行业有何应用
AIGC 在教育行业有以下应用: 宏观层面:如果把人工智能看作一种生命体,AIGC+教育的内涵其实是碳基生命和硅基生命的交互和培育问题。 中观层面:AIGC 技术在知识量、信息获取和处理方面的强势能力,迫使教育界进一步反思现有的教育框架,包含教学主体、教学内容、教学载体、学习主体等多个维度。 微观层面:教育的各场景,都因 AIGC 技术的应用而有所助益,如教师的备课规划等。此外,教师需要具备对 AIGC 鉴别的认知能力,判断教学场景是否适合引入 AI 技术,明确学生课程产出训练的目的,从而处理好学生产出中 AI 成分的占比是否需要教育干预。但在教育教学过程中,如果设计专业学生无差别地应用 AIGC 替代手绘训练,可能导致他们在需要快速表达的场景中缺失相关技能。
2024-09-05
AI 提示词对是做什么的,user 和 assistant 代表什么?
AI 提示词是用于向语言模型传递指令、问题或其他详细信息,以指导模型生成更好的结果。其质量与提供的信息数量和完善度有关。 在使用 OpenAI 的 gpt4 或者 gpt3.5turbo 等聊天模型时,可以使用三个不同的角色来构建 prompt:system、user 和 assistant。其中,system 不是必需的,但有助于设定 assistant 的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。user 代表用户传递给模型的消息,而 assistant 的消息则是模型给出的响应。 提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。例如,可以通过改进提示词来获得更符合需求的输出结果。语言模型能够基于给出的上下文内容进行续写,但输出结果可能出人意料,通过优化提示词可改善。 此外,从提示词的视角看大模型的输出,可分为系统提示词、用户提示和助手提示词三段,这三段内容是连续的。攻击者可能通过操纵模型输出获取系统提示词,而系统提示词包含应用的原信息、功能设定、产品设定以及 AI 应用的逻辑等。
2024-12-11
Flux 的lora模型训练教程,我想用用diffuser代码训练,而不是webui或comfyui
以下是关于 Flux 的 lora 模型训练的相关信息: Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:https://github.com/city96/ComfyUIGGUF 在最新版本的 ComfyUI 中,GGUF 的节点插件可在 Manager 管理器中搜到下载安装,但 NF4 的配套节点插件搜不到。 注意使用精度优化的低配模型时,工作流和原版不同。把官方的 fp8 工作流中底模的节点换成 NF4 或者 GUFF 即可。 相关生态发展迅速,有 Lora、Controlnet、IPadpter 相关生态建设,字节最近发布的 Flux Hyper lora 可用于 8 步快速生图。下节将先讲讲 Flux 的 lora 训练。
2024-09-05