ChatGLM 系列的开源版本包括:
[title]中文大模型基准测评2023年度报告[heading1]测评模型列表9.Qwen-72B-Chat阿里巴巴开源的72B的Chat版本22.讯飞星火V3.0科大讯飞官方发布的V3.0版本的API10.序列猴子出门问问官方发布的API版本23.Minimax(应事)稀宇科技官方网页版产品【应事】11.Yi-34B-Chat零一万物开源的34B的Chat版本24.ChatGLM3-6B清华&智谱AI开源的第三代6B版本12.PCI-TransGPT佳都科技小范围内测API版本25.Chinese-Alpaca2-13B yiming cui(个人开发者)个人开源的基于Llama2的汉化版中文模型13.360GPT_Pro 360 360智脑的API升级版本Pro26.Llama_2_13B_Chat Meta官方开源的2代13B的Chat版本本次测评数据选取了SuperCLUE-12月测评结果,模型选取了国内外有代表性的26个大模型在12月份的版本。SuperCLUE模型象限
[title]智谱·AI开源模型列表[heading2]Chat模型��语言模型列表|模型|介绍|上下文token数|代码链接|模型权重下载链接|<br>|-|-|-|-|-|<br>|ChatGLM3-6B|第三代ChatGLM对话模型。ChatGLM3-6B采用了全新设计的Prompt格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和Agent任务等复杂场景。|8K|[ChatGLM3](https://github.com/THUDM/ChatGLM3)|[Huggingface](https://huggingface.co/THUDM/chatglm3-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/chatglm3-6b)|[始智社区](https://www.wisemodel.cn/models/ZhipuAI/chatglm3-6b)|[Swanhub](https://swanhub.co/ZhipuAI/chatglm3-6b)|[启智社区](https://openi.pcl.ac.cn/Zhipu.AI/ChatGLM3/modelmanage/model_readme_tmpl?name=chatglm3-6b)|<br>|ChatGLM3-6B-base|第三代ChatGLM基座模型。ChatGLM3-6B-Base采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base具有在10B以下的基础模型中最强的性能。|8K||[Huggingface](https://huggingface.co/THUDM/chatglm3-6b-base)[](https://huggingface.co/THUDM/chatglm3-6b-base)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/chatglm3-6b-base)|[始智社区](https://www.wisemodel.cn/models/ZhipuAI/chatglm3-6b-base)|[Swanhub](https://swanhub.co/ZhipuAI/chatglm3-6b-base)|[启智社区](https://openi.pcl.ac.cn/Zhipu.AI/ChatGLM3/modelmanage/model_readme_tmpl?name=chatglm3-6b-base)|<br>|ChatGLM3-6B-32k|第三代ChatGLM长上下文对话模型。在ChatGLM3-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。|32K||[Huggingface](https://huggingface.co/THUDM/chatglm3-6b-32k)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/chatglm3-6b-32k)|[始智社区](https://www.wisemodel.cn/models/ZhipuAI/chatglm3-6b-32k)|[Swanhub](https://swanhub.co/ZhipuAI/chatglm3-6b-32k)|[启智社区](https://openi.pcl.ac.cn/Zhipu.AI/ChatGLM3/modelmanage/model_readme_tmpl?name=chatglm3-6b-32k)|
[title]模型能力简介[heading3]更强的文本编码器Kolors针对这一问题,选择直接使用大语言模型进行文本编码。具体来说,Kolors使用了ChatGLM-6B-Base模型,这是一个中英双语的大语言基座模型。这里没有选择其SFT版本ChatGLM-6B是因为作者认为未经对齐人类偏好的基座模型反而更适合文本特征的提取。在最大编码长度方面,ChatGLM也更高,达到了256。与SDXL一样,Kolors取文本编码器的倒数第二层特征作为文本条件。下表对比了主流开源文生图模型所选用的文本编码器和支持的语言。