直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

请你描述一下AI的发展情况

回答

AI 的发展情况如下:

AI 技术的发展历程:

  1. 早期阶段(1950s - 1960s):包括专家系统、博弈论、机器学习初步理论。
  2. 知识驱动时期(1970s - 1980s):有专家系统、知识表示、自动推理。
  3. 统计学习时期(1990s - 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。
  4. 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。

当前 AI 前沿技术点:

  1. 大模型(Large Language Models):如 GPT、PaLM 等。
  2. 多模态 AI:包括视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习:例如元学习、一次学习、提示学习等。
  5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。
  6. 机器人学:涵盖强化学习、运动规划、人机交互等。
  7. 量子 AI:包括量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

AI 的重大突破:

  1. 1956 年人工智能被提出。
  2. 1997 年深蓝在国际象棋比赛中击败卡斯帕罗夫。
  3. 2016 年 AlphaGo 在围棋比赛中战胜李世石。
  4. 2020 年 GPT-3 发布。
  5. 2022 年 DALL-E 发布。
  6. 2023 年 GPT-4 发布。

从图灵测试之后,科学家们就努力让机器变得更聪明。人工智能从一个小小的想法发展至今,已经能帮人们做很多事情,技术的变革也越来越快。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

当AI走进小学课堂(全套课程设计)

[title]当AI走进小学课堂(全套课程设计)[heading1]课程内容设计[heading2]2.AI的发展历程和重大突破[heading3]2.2人工智能的发展1956年人工智能被提出1997年深蓝击败卡斯帕罗夫2016年AlphaGo击败李世石2020年GPT-3的发布2022年DALL-E的发布2023年GPT-4的发布2024年即将发布GPT-5说明:这里未来可以改进一下,当时匆忙只写了语言模型和DALL-E,绘图的SD和Midjourney等我都没写进去,已经新出的视频和音乐创作工具等,都可以往上写,但也不用太多。只需要让孩子理解,技术的变革已经越来越快了!内容从图灵测试之后,科学家们就开始努力让机器变得更聪明。到了1956年,人工智能这个词首次被提出,从那时起,人们就开始正式研究如何让机器像人一样思考了。重大突破1997年:有一个叫做深蓝的电脑,在国际象棋比赛中战胜了世界冠军。这是第一次机器在这样的智力游戏中击败了顶尖的人类选手。2016年:有一个更聪明的AI叫AlphaGo,它在围棋比赛中战胜了世界冠军李世石。围棋是一个非常复杂的游戏,这次胜利让全世界都很惊讶。2020年:有一个AI叫GPT-3,它非常擅长用电脑写文章和做其他很多用语言的事情。它可以帮助人们写故事、答复邮件,甚至写程序代码!2022年:还有一些AI,比如DALL-E,可以根据你告诉它的话,画出你想象中的图画。你说“一个穿宇航服的猫在月球上”,它就可以画出来!看到这些有趣的故事,你们是不是觉得人工智能非常神奇呢?从一个小小的想法发展到现在,人工智能已经能帮我们做很多事情了。那么,接下来,我们来探索一下人工智能现在都可以做些什么吧!

问:新手如何学习 AI?

[title]问:新手如何学习AI?持续学习和跟进:AI是一个快速发展的领域,新的研究成果和技术不断涌现。关注AI领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入AI相关的社群和组织,参加研讨会、工作坊和会议,与其他AI爱好者和专业人士交流。

其他人在问
google ai studio
生成式 AI Studio 是 Google Cloud 上的一个工具,允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少。 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 生成式人工智能的工作原理包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练以解决特定问题。 Google Cloud 提供了多种相关工具,如 Vertex AI(端到端机器学习开发平台,帮助构建、部署和管理机器学习模型)、Model Garden(平台,可发现 Google 的基础和第三方开源模型,并提供 MLOps 工具用于自动化机器学习管道)。
2024-10-31
AI创建角色的指令
以下是关于 AI 创建角色的一些信息: 在 c.ai 这个 AI 角色扮演对话平台中,创建角色的功能非常简洁,主要依赖用户编写的 Description(基础信息)和 Definition(复杂背景),并且已经支持上传声音片段实现语言克隆。 在筑梦岛中,创建梦中人(捏崽)需要用户提供各类信息,其中最核心的是完整设定这样的人设背景信息;创建梦屋(拉群)则允许用户添加多个 AI 角色创建一个群聊。 在游戏开发中,如 Arrowmancer 这款 RPG 游戏,具有 AI 创造的角色,以实现几乎无限的新游戏玩法。还有游戏开发公司使用 AI 让玩家创建自己的游戏内角色形象,相比让玩家从零开始上传自己的内容,通过 AI 生成内容更安全,因为可避免创造冒犯性内容,同时让玩家有更强的归属感。 在使用 Nijijourney 5 进行二次元角色设计时,为获得最佳结果,可能需要尝试不同的权重组合并根据产出调整 Prompt。
2024-10-31
AI制作音乐的工具和案例
以下是一些 AI 制作音乐的工具和相关案例: :无需昂贵的录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并且能够像任何专业 DAW 一样进行编辑和混音。 :AI 驱动的音乐制作平台,使用 AI 创作歌词、节拍和人声,然后直接从 Cassette 进行混音和发布。 :人工智能创作情感背景音乐。 :简化的音乐创作工具,帮助您为视频和播客创作音乐。 :为直播的游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,所有内容都包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :您的虚拟音乐工作室。 :即时制作音乐,与世界分享。 :智能乐谱。 :由一群艺术家、研究人员、设计师和程序员组成的团队。 (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 案例方面,Manglemoose 最近展示了由他们最新开发的音乐生成器制作的视频案例,该工具的名称尚未公布。bGPT 是一种具有下一个字节预测功能的模型,它几乎完美地复制了符号音乐数据的转换过程,在将 ABC 符号转换为 MIDI 格式时实现了每字节 0.0011 位的低错误率。此外,bGPT 在模拟 CPU 行为方面表现出卓越的能力,执行各种操作的准确度超过 99.99%。
2024-10-31
Notion AI 软件
Notion AI 相关信息如下: Notion CEO 表示,Notion AI 的进展较快。早期对 GPT3 作用轻视,看到 GPT4 能力后想法转变,认为其能改变与计算机的交互模式。之后团队全身心投入 AI 项目,需结合已有积木,招聘人才并让内部人员形成共同信念。 Notion 更多从计算、内容或文本角度思考,认为若更多人能创造性使用软件情况会不同。Notion 的诞生源于一篇论文,初衷是创造能让人们灵活调整和定制的软件,后来转变为提供各种 blocks 构建模板让用户上手即用。 除数据库外,Notion 本身有 AI 相关功能,团队很早就与 OpenAI 和 Anthropic 合作集成 AI 能力,Notion AI 里有 Q&A 功能,能基于个人/组织的知识库回答问题,类似之前的 Coze Bot,只是信息源不同。
2024-10-31
AI共学
以下是关于 AI 共学的相关信息: 「AI 编程共学」: 10 月 28 日 20:00 开始,分享人麦橘,分享内容为 0 基础做小游戏分享,包括通往 AGI 之路增量小游戏、转生之我是野菩萨,回放链接:。 10 月 29 日 20:00 开始,分享人梦飞,分享 0 编程基础入门 Cursor 极简使用指南,回放链接:。 10 月 30 日 20:00 开始,分享人银海,分享 0 基础学做 AI 拍立得,包括 Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用,回放链接:。 10 月 31 日 20:00 开始,分享人猪猪🐷撞南墙。 「Agent 共学」之“谁是人类”「WayToAGI x 阿里云」: 大赛简介:HB 是由 WayToAGI 主办,阿里云百炼和通义千问赞助发起的 AI 共学活动,设置连续三轮迭代式初赛和一次决赛,鼓励制作 AI Agent 及赋予 AI Bot 人设,让人感受 Agent 拟人化魅力(必须使用通义千问 API)。 WaytoAGI 介绍: 。 比赛目标:通过 AI Bot 拟人化比赛提升 Prompt 书写能力,加深对 AI Agent 的学习和理解。 活动形式:在活动群里,主持人出题,AI 机器人和人类卧底在微信群中回答问题,一场比赛 6 8 轮,每轮群众选出谁是人类,详细见 。 比赛结果: 。
2024-10-31
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
寻找可以根据语言描述对视频进行剪辑的ai
以下为您介绍一些可以根据语言描述对视频进行剪辑的 AI 工具和方法: 1. MMVid:这是一个集成的视频理解系统,由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具。它能处理和理解长视频内容,应用场景包括快速的视频剪辑,您只需输入镜头脚本,即可提取素材库内容进行拼接。其官方网站暂未提及。 2. 制作流程: 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 3. 声音制作: 对于英文台词,可以使用 11labs(官网:https://elevenlabs.io/)进行对白制作,但可能会遇到 AI 声音没有情绪和情感的问题,需要不断抽卡调试。 国内可以使用出门问问的魔音工坊,它可以使用情绪调节控件。 4. 剪辑工具: 对于 1 3 分钟的短片,可以使用剪映,方便快捷。 对于更长篇幅或追求更好效果的视频,可能需要使用 PR/FCP/达芬奇等传统剪辑软件。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-24
我想通过描述,生成一些icon,供我挑选。请问我推荐一些网站
以下为您推荐一些可以通过描述生成 icon 的网站及相关信息: 1. Midjourney: 直播礼物风格图标:可以在素材网站上找到喜欢的 icons 风格进行喂图,然后加上关键词,如“Gift icon”“cartoon style”“solid color background luminous effect”“3d –iw 1 –v 5 –q 2”等,“Gift icon”可替换为其他关键词,如“beer icon”“Headphone icon”等。 主题应用 icons:关键词如“icon design”“light texture”“glow”“Dribbble”“3D”“frostedglass effect”“3D”“ui”“ux”“–upbeta –q 2 –v 4”。 B 端图标:先喂图,然后加上关键词,如“A data icon”“blue gradient frosted glass”“frostedglass building”“white transparent technology sensewhite city building scene”“data line link”“chip”“OCrenderer”“big data”“industrial machinery”“high detailight gray background with simple linear details”“studio lighting”“3d”“c4d”“pure white background”“8k”。 2. 擅长创作表情包 Meme: Prompt 4:Black and white photo illustration of a doge face in the center, looking utterly baffled with a humorous 'shrug' gesture. Adjacent to the doge, three doge face icons are displayed for 'Like', 'Repost', and 'Collect'. The 'Like' doge is smitten with heart eyes, the 'Repost' doge is dizzy with spiraled eyes, and the 'Collect' doge is greedily drooling over a bone. Prompt 5:Vector meme in black and white of a doge depicted with three heads and six arms, exuding a calm, Buddhalike aura. Surrounding comical diagram elements point to the doge with arrows labeled '70% tranquility', '20% deep thought', and '10% in the moment'. Prompt 6:如果想要呈现出特定的表现结果,还可以用比喻、类比等方法达到类似的画面。比如想生成很多 Doge,可以借助九头蛇等提示词。如 Illustration in a black and white sketch style, focusing on humor and cuteness. A nineheaded doge creature is depicted, where each head is comically expressive. Some heads are chuckling, others are making funny faces, a few are curiously tilting their heads, and some have their tongues out in amusement. 线程:
2024-10-22
如何进行ai学习 用户id:1232334 描述:北欧5国10日游
以下是新手学习 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-10-15
runway具体属于哪种赛道,怎么描述它
Runway 属于 AI 视频领域。它是一款最先推出模型的 AI 视频产品,目前仍维持着领先地位,并在不断快速迭代。 其产品定位更偏向影视、艺术表达,具有以下特点和优势: 1. 擅长真实系、风景、空间视频生成,对二次元场景支持不佳。 2. 支持绿幕场景生成、视频绿幕抠像等,方便影视制作和后期处理。 3. 7 月更新的 Gen3 支持 Alpha Turbo(更快速)和 Alpha(更强表现力)两种模式,增强了对复杂提示词描述的理解和对图像运动元素的识别,能够实现富有想象力的过渡和场景中元素的精确关键帧。还支持设置图片作为动画首帧/尾帧,但目前不支持笔刷等高级调节能力。单次生成视频时长最长可达 10 秒,可延长到 40 秒。 4. Gen3 Alpha Turbo 支持竖屏尺寸视频生成、加大力度发力视频到视频(风格转绘)能力,并表示即将推出更多控制能力。 Runway 由一家总部位于旧金山的 AI 创业公司制作,年初在互联网爆火。2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。 相关链接: 1. 查看 Runway 目前支持的场景和视频案例:https://runwayml.com/product/usecases 2. Gen1 能力介绍:https://research.runwayml.com/gen1 3. Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 4. 学习 Gen1 详细设置方式的视频:https://youtu.be/I4OeYcYf0Sc 5. 官方网站:https://runwayml.com/
2024-10-12
面試主管請您於第二次面試時回答以下三個問題並以PPT呈現出來。 1. AI 在教育中的發展趨勢 AI 技術未來幾年在教育領域的發展趨勢是什麼?哪些創新技術或應用會對教育產生重大影響? 2. AI 對教育角色的改變 隨著 AI 的應用增多,教師和學生的角色會發生哪些轉變?您如何看待 AI 在教學過程中的定位? 3. AI 賦能的教育未來 請描述一個您心中 AI 賦能的未來教育場景。這個場景下,AI 如何幫助學生、教師和管理者提升教學與學習體驗?
很抱歉,目前知识库中没有关于您所提到的这三个问题的相关内容。但以下是为您提供的一些初步分析和思路: 对于“AI 在教育中的发展趋势”: AI 技术在未来几年于教育领域的发展趋势可能包括更加个性化的学习体验、智能化的教学辅助工具、虚拟现实和增强现实技术的融合应用等。创新技术如自适应学习系统能够根据学生的学习进度和特点提供定制化的学习内容;自然语言处理技术可以实现更智能的辅导和答疑。 对于“AI 对教育角色的改变”: 随着 AI 的应用增多,教师可能会从知识传授者转变为引导者和促进者,更多地关注学生的情感需求和综合素质培养。学生则会更加主动地参与学习过程,成为自我导向的学习者。AI 在教学过程中可以作为辅助工具,帮助教师提高教学效率,为学生提供个性化支持。 对于“AI 赋能的教育未来”: 在一个 AI 赋能的未来教育场景中,学生可以通过智能设备随时随地获取个性化的学习资源,AI 能够根据学生的学习情况实时调整教学内容和进度。教师可以借助 AI 分析学生的学习数据,更精准地进行教学设计和辅导。管理者能够利用 AI 进行教育资源的优化配置和决策制定,提升教育管理的效率和质量。 以上内容仅供参考,您可以根据实际情况进一步深入研究和完善。
2024-10-11
如何进行ai学习 用户id:1232334 描述:北欧5国10日游
新手学习 AI 可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。
2024-10-10
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
介绍一下智谱清言
智谱清言是由智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力有优化空间,知识百科方面与其他第一梯队模型相比稍显不足。 适合应用: 场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。 访问方式: PC 端: 移动端: 小程序端:搜索【智谱清言】进入【清影】智能体 在中国 AI 领域,智谱 AI 的模型具有开创性,其背后技术源自清华大学研发团队的科研成果转化。产品设计对标 ChatGPT,在逻辑推理和处理复杂提示词方面表现出明显优势。
2024-10-30
能否介绍一下ai的历史
人工智能(Artificial Intelligence)的历史源远流长。 早在 19 世纪,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,正式提出“人工智能”一词,并确立其为一门学科。 此后近 70 年,AI 的发展起伏不定,曾两次引发人类对其毁灭世界的恐慌,热度时高时低。 在发展过程中,对于一些任务,如根据照片判断一个人的年龄,由于无法明确解法,无法编写明确程序让计算机完成,这类任务正是 AI 所关注的。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。
2024-10-27
AI如何综合利用,可以高效率做哪些事情,总结一下
以下是 AI 综合利用并能高效率做事的一些方面: 在教学中: 帮助教师节省时间和提高生产力,如备课。 为学生制定个性化学习计划,分析学生表现并根据知识差距和个人学习风格创建定制的学习路径。 进行课程开发和创造学习沉浸体验,包括生成图像、文本和视频,转化为补充教育材料、作业和练习题。 与新的 AI 工具结合,为学生提供更好的口语和展示沟通准备工具。 但与优秀人类教师相比仍有差距,人机融合是趋势。 在政府工作中: 帮助政府为美国人民提供更好的结果,扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。 为机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 帮助机构通过更快速和高效的合同获取特定的 AI 产品和服务。 加速招聘 AI 专业人员。 在工作场景中: 营销方面,如蓝色光标 X 京东探索出 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告,涵盖多种相关数据和分析。 办公方面,如利用 ChatGPT 生成 Markdown 语法内容,再借助 MindShow 转换为精美的 PPT。
2024-10-26
AI如何综合利用,可以高效率做哪些事情,总结一下短一点
以下是 AI 综合利用能够高效率做的一些事情: 在政府领域,帮助政府为民众提供更好的服务,如扩大机构的监管、治理和福利发放能力,降低成本并增强系统安全性。包括为机构使用 AI 发布指导,帮助机构更高效、更经济、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员并为员工提供相关培训。 推动经济增长和繁荣,通过降低监管不确定性,鼓励对 AI 的投资和应用,及时消除创新障碍。 在教学中,帮助教师节省时间和提高生产力,如分析学生表现制定个性化学习计划,生成图像、文本和视频用于课程开发和学习沉浸,结合新的 AI 工具为学生提供更好的沟通准备。但与优秀人类教师相比仍有差距,人机融合是趋势。
2024-10-26
近一年ai市场融资情况
以下是近一年 AI 市场融资的一些情况: 生成式 AI 现在的收入总计约为 30 亿美元,SaaS 市场花了近十年才达到此收入水平,而生成式 AI 在第一年就达成。同时,融资分配不均匀,基础模型获得了较大的融资轮,应用层则刚刚开始。 Genspark 在种子轮融资中获得 6000 万美元(约合人民币 4.35 亿元),投后估值达 2.6 亿美元(约合人民币 18.87 亿元),资金将用于进一步开发和推广其 AI 搜索产品。 2024 年美国融资金额超过 1 亿美元的部分 AI 公司: Cyera 于 2024 年 4 月 9 日完成 3 亿美元 C 轮融资,估值 14 亿美元,主营 AI 数据安全平台。 Celestial AI 于 2024 年 3 月 27 日完成 1.75 亿美元 C 轮融资,用于 AI 存储和计算的光互连技术平台。 FundGuard 于 2024 年 3 月 25 日完成 1 亿美元 C 轮融资,是 AI 投资会计系统。 Zephyr AI 于 2024 年 3 月 13 日完成 1.11 亿美元 A 轮融资,用于 AI 药物发现和精准医疗。 Together AI 于 2024 年 3 月 13 日完成 1.06 亿美元 A 轮融资,涉及 AI 基础设施和开源生成。 Glean 于 2024 年 2 月 27 日完成 2.03 亿美元 D 轮融资,是 AI 驱动企业搜索。 Figure 于 2024 年 2 月 24 日完成 6.75 亿美元 B 轮融资,主营 AI 机器人。 信息来源:Techcrunch
2024-10-30
今年AI融资情况
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |EvenUp|20241008|1.35|D|10|AI 法律科技|应用|法律|贝恩资本风险投资,SignalFire,Lightspeed| |Poolside|20241002|5|B|30|AI 软件开发平台|模型|编程|贝恩资本风险投资,Redpoint,StepStone,Nvidia| |OpenAI|20241002|66||1570|大模型|模型|大模型|Thrive Capital,Tiger Global,软银|有史以来规模最大的一轮融资| |KoBold Metals|202410|4.915|||AI 矿产勘探|应用|科研|本轮投资者未披露,过往投资者包括 Bond,Andreessen Horowitz| |Glean|20240910|2.6|E|45|企业搜索|应用|企业服务|不详|估值增长 87.5%| |Safe Superintelligence|20240904|10||40|安全大模型|模型|大模型|Andreessen Horowitz,Sequoia,DST Global| |Magic|20240829|3.2|C||AI 编码|应用|编程|CapitalG,Sequoia,Jane Street Capital|今年的第二轮巨额融资| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst,Kleiner Perkins,Greenoaks| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue,Sequoia,Redpoint,Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金,M Ventures,淡马锡,Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital,Hamilton Lane,Blumberg Capital,Team8| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia,OpenAI,微软| |Weka|20240513|1.4|E|16|AI 原生数据平台|应用|数据|Valor Equity Partners,高通创投,Nvidia,日立创投| |CoreWeave|20240501|11|C|190|GPU 基础设施|基础设施|硬件和云平台|Coatue,Fidelity,Altimeter Capital,Magnetar Capital| |Scale AI|202405|10|F|140|数据标记服务|应用|数据|Accel,Tiger Global,Spark Capital,亚马逊| |Blaize|20240429|1.06|D||AI 边缘计算平台|基础设施|硬件和云平台|淡马锡,富兰克林邓普顿,Bess Ventures| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners,Index Ventures,Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund,Ramp 联合创始人 Eric Glyman,Stripe 联合创始人 Patrick 和 John Collison,DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital,ARCH Venture Partners| 信息来源:Techcrunch
2024-10-28
针对现阶段我国AI发展情况,实体企业面临的机会和挑战有哪些?
现阶段我国 AI 发展情况下,实体企业面临的机会和挑战如下: 机会: 1. 提高工作效率:如在编程、自动化任务处理和内容创作等方面,AI 能够快速完成复杂任务。 2. 创新业务模式:企业领导者可利用 AI 提高工作效率,将更多精力投入创新和战略规划。 3. 拓展市场边界:通过提示词工程优化 AI 输出,提升市场竞争力。 挑战: 1. 岗位替代风险:部分技术岗位如系统管理员、数字营销文案撰写等可能受到 AI 的冲击。 2. 伦理考量:包括数据隐私和安全、算法公平性、透明度和可解释性、人机协作以及社会影响等方面。 3. 适应新技术环境:企业需要不断调整和适应 AI 带来的工作方式和业务模式的变化。 同时,在国际上,如欧洲国家,要成为 AI 超级大国,需创造良好环境,应对包括物理伤害、国家安全、心理健康等风险,解决伦理挑战,建立公众信任,以充分发挥 AI 的优势。
2024-10-20
AI在科研领域中的应用有哪些,以及国内外情况对比
AI 在科研领域中的应用广泛,特别是在医疗健康方面: 抗癌方面:AI 能够提前诊断胰腺癌,如相关研究表明其有可能提前三年做出诊断。 抗衰老方面:通过筛查大量化合物,发现高效的药物候选物,其药理学性质优于已知的抗衰老物质。 早期疾病防治方面:例如在帕金森病的研究中,利用神经网络分析患者体液中的生物标志物,可在症状出现前几年发现疾病。 发现新靶基因:两名高中生与医疗技术公司合作,借助 AI 发现了与胶质母细胞瘤相关的三个新靶基因。 寻找治疗方法:如亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化进行研究,以识别阿尔茨海默病的原因和潜在药物靶点。 国内外情况对比: 在医疗 AI 领域,中美存在较大差异。美国医疗支出占 GDP 比重约 17%,中国约 7%。美国医生独立行医,有独立决策权,议价能力和意愿较强;中国政府和医院集采议价能力强,采购流程复杂。此外,由于存在“灰色收入”“医患不信任”“考核评比”等问题,中国医院、医生对于可能记录、审查自己言行的应用普遍持抵触态度。在中国的落地场景中,“AI 协助医生”不如“AI 独立诊断”,机械套用美国的 AI 医疗应用模式在中国基本行不通。
2024-10-18
ai未来发展情况会怎么样
AI 的未来发展前景令人振奋,同时也伴随着新的挑战和责任。以下是一些可能的发展情况: 能力持续提升:未来的 AI 系统可能具备更强的理解力、创造力和推理能力,进一步扩展应用范围和深度。 超级个性化:能更深入理解客户需求和偏好,提供高度定制的产品和服务。 预测性决策:通过分析数据和复杂模式做出更准确预测,辅助企业战略规划。 自动创新:具备独立创新设计能力,加速产品开发周期。 智能流程优化:自动识别和优化企业内部复杂流程,提高运营效率。 应用场景不断扩展: 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 交通管理:优化交通信号灯和流量,缓解拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 面临的挑战: 资金投入:预计会有团队花费超 10 亿美元训练单个大型模型。 计算压力:政府和大型科技公司承受计算需求压力,逼近电网极限。 社会影响:如对选举的潜在影响,需要谨慎对待。 总之,人工智能领域充满惊喜、伦理挑战和巨大的商业价值,各方势力竞争激烈,未来将不断突破界限、挑战极限,甚至重新定义一些熟悉的词汇。
2024-10-17
最新AI情况
AI 正在普及并快速发展,我们在日常生活中的很多方面都能与之互动,比如交通、天气预测以及电视节目推荐等。当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包括自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学,包含强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 技术发展历程如下: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。
2024-09-27