Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

针对现阶段我国AI发展情况,实体企业面临的机会和挑战有哪些?

Answer

现阶段我国 AI 发展情况下,实体企业面临的机会和挑战如下:

机会:

  1. 提高工作效率:如在编程、自动化任务处理和内容创作等方面,AI 能够快速完成复杂任务。
  2. 创新业务模式:企业领导者可利用 AI 提高工作效率,将更多精力投入创新和战略规划。
  3. 拓展市场边界:通过提示词工程优化 AI 输出,提升市场竞争力。

挑战:

  1. 岗位替代风险:部分技术岗位如系统管理员、数字营销文案撰写等可能受到 AI 的冲击。
  2. 伦理考量:包括数据隐私和安全、算法公平性、透明度和可解释性、人机协作以及社会影响等方面。
  3. 适应新技术环境:企业需要不断调整和适应 AI 带来的工作方式和业务模式的变化。

同时,在国际上,如欧洲国家,要成为 AI 超级大国,需创造良好环境,应对包括物理伤害、国家安全、心理健康等风险,解决伦理挑战,建立公众信任,以充分发挥 AI 的优势。

Content generated by AI large model, please carefully verify (powered by aily)

References

生成式人工智能:技术就业市场的新篇章

生成式AI在编程、自动化任务处理和内容创作等方面展现出惊人的能力。以编程为例,AI可以在极短的时间内完成复杂的编码任务,这是任何人类程序员难以匹敌的。这种高效率使得AI在商业世界中极具价值,但同时也威胁到了一些技术岗位的存在。举个例子,系统管理员的职责通常包括安装软件、编写脚本等,这些任务现在可以通过AI自动完成。数字营销文案撰写也面临类似的挑战,因为AI能够以多种风格和声音创作内容,大幅减少了对人类撰稿人的需求。微软近期的动向是这一趋势的一个突出例证。该公司在大举投资ChatGPT的同时,宣布了大规模裁员计划,这凸显了AI技术在替代某些职位方面的潜力。[heading3]技术变革下的机遇与挑战[content]然而,这种技术变革并非全然是负面的。实际上,它也为那些能够适应新环境的技术工作者带来了新机遇。AI虽然在某些方面能力超群,但它无法完全取代需要人际交往、团队领导和复杂决策制定的角色。云架构师、网络架构师和企业架构师等职位就是这样的例子。这些工作不仅仅需要技术知识,更需要与人沟通、管理利益相关者和领导团队的能力。此外,AI技术的发展也促使企业领导者重新思考他们的角色。在一个由AI驱动的世界中,领导者可以利用AI作为一个工具来提高工作效率,特别是在处理大量数据、创建演示文稿或响应业务需求时。这使得他们可以将更多的精力投入到创新和战略规划上。

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

然而,随着AI能力的提升,伦理考量和责任使用变得越发重要。企业在利用这些强大工具的同时,必须谨慎行事,确保技术的使用符合道德标准并负责任。以下是一些关键的伦理考量:1.数据隐私和安全:确保在处理和分析数据时,严格遵守隐私法规和安全协议。2.算法公平性:防止AI系统产生或加剧偏见和歧视。3.透明度和可解释性:确保AI决策过程的透明度,使人类能够理解和审核AI的推理。4.人机协作:在自动化的同时,保持人类的监督和最终决策权。5.社会影响:考虑AI应用可能对就业、社会结构等方面产生的广泛影响。为了应对这些挑战,我们可以设计专门的伦理审查提示词:这个伦理审查提示词可以帮助企业全面评估AI项目的伦理影响,确保技术的发展和应用始终以负责任和有益于社会的方式进行。展望未来,AI赋能的企业前景既充满机遇,也面临挑战。提示词工程将在这个新时代扮演关键角色,成为企业利用AI能力、扩展业务边界的重要工具。然而,企业领导者必须始终牢记,技术的力量越大,责任也越大。通过谨慎、负责任地运用这些强大的工具,企业不仅能够实现商业目标,还能为构建一个更美好、更公平的社会做出贡献。在这个AI驱动的未来,成功的企业将是那些能够巧妙平衡技术创新、商业效率和社会责任的企业。提示词工程,作为人类智慧和机器智能之间的桥梁,将继续演进和发展,为这个平衡提供更多可能性和工具。企业领导者需要不断学习和适应,在这个快速变化的时代保持敏锐和前瞻性,同时牢记技术应用的终极目标是为人类创造更大的价值和福祉。

【法律法规】《促进创新的人工智能监管方法》.pdf

European country.Our world-leading status is down to our thriving research base and the pipeline ofA pro-innovation approach to AI regulationexpertise graduating through our universities,the ingenuity of our innovators and the government’slong-term commitment to invest in AI.To ensure we become an AI superpower,though,it is crucial that we do all we can to create the rightenvironment to harness the benefits of AI and remain at the forefront of technological developments.That includes getting regulation right so that innovators can thrive and the risks posed by AI can beaddressed.These risks could include anything from physical harm,an undermining of national security,as well asrisks to mental health.The development and deployment of AI can also present ethical challengeswhich do not always have clear answers.Unless we act,household consumers,public services andbusinesses will not trust the technology and will be nervous about adopting it.Unless we build publictrust,we will miss out on many of the benefits on offer.Indeed,the pace of change itself can be unsettling.Some fear a future in which AI replaces ordisplaces jobs,for example.Our white paper and our vision for a future AI-enabled country is one inwhich our ways of working are complemented by AI rather than disrupted by it.In the modern world,toomuch of our professional lives are taken up by monotonous tasks – inputting data,filling out paperwork,scanning through documents for one piece of information and so on.AI in the workplace has thepotential to free us up from these tasks,allowing us to spend more time doing the things we trained for– teachers with more time to teach,clinicians with more time to spend with patients,police officers withmore time on the beat rather than behind a desk – the list goes on.Indeed,since AI is already in our day-to-day lives,there are numerous examples that can help toillustrate the real,tangible benefits that AI can bring once any risks are mitigated.Streaming services

Others are asking
能够制作工程预算单的AI推荐
目前在制作工程预算单方面,暂时没有特别突出的专门 AI 工具推荐。但您可以尝试使用一些通用的办公软件,它们可能具有相关的功能或模板,例如 Microsoft Excel 等,通过设置公式和参数来辅助您完成工程预算单的制作。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
有哪些好用的AI翻译器
以下是一些好用的 AI 翻译器: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 8. Open AI Translator(强烈推荐):一款接入了 GPT 能力的文本翻译、总结、分析类产品。翻译功能适合在浏览网页时不想采取网页「全部翻译」功能,仅需要查询个别单词、句子时使用。安装后需要去获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址。下载地址: 注:内容由 AI 大模型生成,请仔细甄别。
2025-01-30
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
AI现阶段的成因
AI 现阶段的成因主要包括以下几个方面: 1. 在软件领域,AI 软件公司有三种起源和结果:运行在现有软件之上的 AI 工具,如为 Zoom 会议自动记录会议笔记;运行在现有软件之上且有机会取代现有软件的 AI 工具,如为 Zoom 会议记录笔记后构建视频会议并推销;成为劳动力的 AI 工具,这是一个全新的类别。平台转变促成了前两种情况。同时,软件市场与白领劳动力市场相比规模较小,许多增长最快的公司将现有的昂贵服务转化为大众的低价产品。 2. 在医疗保健和生物技术领域,AI 正在工业化生物制药和医疗保健,应用于从药物设计、诊断到医疗保健交付和后勤功能等各个方面。 3. 在教育领域,学习通常具有功利导向,“突破性新技术+垂直行业知识”的组合能为学习者带来更高投入产出比。在 AI 领域,让 AI 工程师懂行业、让行业专家懂 AI 投入产出比高,但前提是找到高价值应用场景。现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是缺乏带来足够正反馈的高价值应用场景。
2024-12-26
现阶段应对ai诈骗研究进展
现阶段应对 AI 诈骗的研究进展主要包括以下方面: 拜登签署的 AI 行政命令要求开发最强大 AI 系统的开发者与美国政府分享安全测试结果等关键信息。对于可能对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并已在 GPT40 Mini 中部署。Anthropic 在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本以警示模型。Gray Swan AI 的安全专家试用“断路器”,专注于重新映射有害表示。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,Scale 根据私人评估推出了自己的稳健性排行榜。 除了常见的越狱攻击,还存在更隐蔽的攻击,如伯克利和麻省理工学院的研究人员创建的看似无害的数据集,会训练模型响应编码请求产生有害输出。
2024-12-02
ai诈骗现阶段研究进展及其成果
目前关于 AI 诈骗的研究进展及成果的相关内容较少。但在 AI 领域,以下方面的研究成果可能对理解 AI 诈骗有所帮助: 神经网络研究:自 2010 年左右,大型公共数据集的出现推动了神经网络的发展。2012 年卷积神经网络用于图像分类,错误率大幅下降。2015 年微软研究院的 ResNet 架构达到人类水平准确率。此后,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 AI 幻觉应对:研究人员开发多种技术手段应对,如进行数据“体检”,包括数据清洗去除错误信息、补充缺失数据等,以及数据增强为模型提供更多丰富训练数据。 政策方面:拜登签署的 AI 行政命令中,要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,建立相关安全委员会,应对 AI 对关键基础设施的威胁,制定防范利用 AI 制造危险生物材料的新标准,建立检测 AI 生成内容和认证官方内容的标准及最佳实践以防范 AI 导致的欺诈和欺骗。
2024-12-02
现阶段ai工具解决问题的方式方法是什么
现阶段 AI 工具解决问题主要有以下方式方法: 1. 生成式 AI 在艺术创作方面,虽存在幻觉或处理请求时间长等问题,但为满足高级用户需求,许多公司预计会添加如 ChatGPT 那样的“专业版”套餐以提供更高质量服务。 2. AI 工作流:每个工作环节都有自身特点,不能仅依靠一个 AI 工具解决所有问题,而是要为每个环节选择最合适的 AI 工具,通过局部最优解达到全局最优解。AI 能帮助人类迅速写出基础文章,人类在此基础上优化,效率更高。随着大模型进化和提示词能力提升,未来 AI 有望输出更高质量文章。现在学习 AI 工作流是为了提前布局、抢占先机。 3. 在游戏创建领域,第一阶段重点关注工具,生成式人工智能可成为创作者的副驾驶,优化现有 UGC 工作流程,现有平台会添加相关工具,初创公司也会针对其优化工作流程。第二阶段可能会出现从头重新构想创作工作流程的新公司,形成全新创作范式,但具体形式难以预测。
2024-09-27
现阶段如何让AI融入生活和工作
人工智能 正以惊人的速度融入我们的生活和工作,为各个领域带来了革命性的变化。以下是一些现阶段如何让 AI 融入生活和工作的方法: 日常生活方面: 1. 智能家居: 利用智能家居设备,例如智能音箱、智能灯具、智能门锁等,可以简化日常家务,提升生活便利性和安全性。 2. 个性化推荐: 基于 AI 算法的个性化推荐系统可以根据您的兴趣和需求,推荐您可能喜欢的商品、电影、音乐等,帮助您节省时间和精力。 3. 智能语音助手: 智能语音助手可以帮助您完成各种任务,例如设置闹钟、播放音乐、查询天气、拨打电话等,解放您的双手。 4. 智能图像识别: AI 图像识别技术可以用于照片整理、物品识别、文字翻译等,方便您的日常生活。 5. 虚拟现实和增强现实: VR 和 AR 技术可以为您提供身临其境的体验,用于游戏、教育、培训等领域,丰富您的生活娱乐。 工作领域方面: 1. 智能客户服务: AI 客服机器人可以 7x24 小时提供客户服务,解答常见问题,处理简单事务,减轻人工客服压力。 2. 数据分析和决策支持: AI 可以帮助分析大量数据,发现隐藏的模式和趋势,为企业决策提供支持。 3. 自动化工作流程: AI 可以自动化许多重复性的工作流程,例如数据录入、文件整理、报告生成等,提高工作效率。 4. 智能制造: AI 可以用于智能制造,例如预测性维护、质量控制、生产优化等,提高生产效率和产品质量。 5. 个性化学习和培训: AI 可以根据每个学生的学习情况和需求,提供个性化的学习和培训方案,提高学习效果。 6. 医疗辅助诊断: AI 可以辅助医生进行诊断,例如分析医学影像、识别疾病特征等,提高诊断的准确性和效率。 7. 科学研究: AI 可以用于科学研究,例如分析实验数据、提出新理论、设计新实验等,加速科学发现。 总而言之,AI 已经渗透到生活的各个方面,并将在未来发挥更大的作用。随着 AI 技术的不断发展,我们可以期待 AI 将为我们的生活和工作带来更加便利、智能和高效的体验。
2024-05-08
如何做一个具身智能实体?
要实现具身智能实体,以下是一些关键方面: 1. 空间智能:像人类看到桌上水杯能自动计算其位置和与周围事物的关系并预测后续情况一样,具身智能实体也应具备这种能力,将感知与行动联系起来,例如特斯拉的 FSD 以及英伟达的 GR00T 项目。 2. 通用智能体特征:能在开放世界中探索,拥有海量世界知识,并能执行无数任务。 3. 与环境的互动:无论是在物理世界还是数字世界,具身智能实体都需要感知、交互、主动获取数据、主动犯错、主动迭代、收集和反馈。 4. 对工具的理解和使用:有效使用工具的前提是全面了解工具的应用场景和调用方法,通过学习如从示范中学习和从奖励中学习等方法,利用环境和人类的反馈做出调整。 5. 感知物理世界:在物理世界中感知环境的难度较大,需要重点关注更底层的传感,包括视觉传感和触觉传感,充分感知和理解更多信息以进行决策。 需要注意的是,目前具身智能的实现仍面临诸多挑战,数字世界可能会先于物理世界取得突破。
2024-10-22
我需要一个能用于命名实体识别的prompt,针对具体的抽取事例为我提供一个这样的模板,要保证抽取结果的准确性。
以下是一个用于命名实体识别的 Prompt 模板示例: “请从以下文本中准确识别出所有的命名实体,并按照人物、地点、组织、时间等类别进行分类:” 通过这样明确的指令,能够引导模型更有针对性地进行命名实体的抽取,从而提高抽取结果的准确性。
2024-09-08
AI在实体服装店等方面的应用
以下是 AI 在实体服装店方面的应用: 1. 设计方面: 提升设计质量和效率。 利用 AI 绘画进行服装款式、图案等的设计。 根据客户对颜色、面料和款式的偏好创建服装可视化。 2. 营销方面: 利用图像生成工具进行广告宣传,如 DALLE 2 用于生成与服装相关的广告图像。 利用 AI 向客户推荐特定服装。 3. 客户服务方面: 采用 AI 驱动的聊天机器人来处理客户服务请求。 4. 商品方面: 进行 AI 服装预售。 将 AI 绘画应用于实体印刷,如在 T 恤、杯子等实物上印刷相关图案。
2024-08-15
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
AI应用的挑战之一,数据,可以展开讲讲吗
在 AI 应用中,数据是至关重要但也面临诸多挑战: 1. 高质量数据短缺:传统互联网数据已难以满足需求,AI 模型需要更高质量的“前沿数据”,包括复杂推理过程、专业知识和人类思维模式等,以提升推理能力和整体性能。 2. 数据标注角色转变:从简单的画边界框变为需要证明复杂数学定理或批判性审查 AI 生成的多种解决方案。 3. 合成数据的应用与风险:合成数据成为解决真实数据获取难、隐私保护成本高等问题的途径,但也存在与真实数据分布不一致导致模型偏差、隐藏误导性模式影响模型可靠性等风险。 4. 数据与需求不匹配:产品从业者使用 AI 工具时,面临默认知识库和能力与需求不匹配的问题,且市场上 AI 工具大多功能相似、生成内容质量不稳定。 5. 选择和学习成本高:用户存在不知如何找到适用的 AI 工具、因产品同质化严重不知如何选择以及学习成本高等困扰。 6. 潜在的偏见和歧视:AI 训练依赖大量数据,若数据集存在偏见,可能在招聘等应用场景中复制甚至加剧对特定社会群体或性别的偏见,导致无意的歧视,带来法律责任。 7. 数据隐私问题:使用 AI 招聘系统收集大量个人数据,若被滥用会侵犯候选人隐私。
2024-12-16
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
你觉得ai+健康 会如何发展 ,优势和挑战分别是什么
AI 在健康领域的发展具有巨大潜力,同时也面临着一些优势和挑战。 优势方面: 有助于推进医疗保健中负责任地使用 AI,促进开发价格合理且能拯救生命的药物。 能够为教育者提供支持,例如在学校中提供个性化辅导,从而变革教育模式。 挑战方面: 存在工作场所监视、偏见和岗位替代等风险,可能影响劳动者权益。 可能会出现对劳动者补偿不足、不公平评估工作申请以及妨碍劳动者组织的情况。 对于医疗保健中 AI 应用的安全性需要建立相应的程序来接收和处理相关报告,并采取补救措施。 总之,AI 在健康领域的发展前景广阔,但需要妥善应对潜在的挑战,以实现其最大的价值和效益。
2024-11-14
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21