直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

能否介绍一下ai的历史

回答

人工智能(Artificial Intelligence)的历史源远流长。

早在 19 世纪,查尔斯·巴贝奇发明了计算机,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。

1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。

1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。

1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,正式提出“人工智能”一词,并确立其为一门学科。

此后近 70 年,AI 的发展起伏不定,曾两次引发人类对其毁灭世界的恐慌,热度时高时低。

在发展过程中,对于一些任务,如根据照片判断一个人的年龄,由于无法明确解法,无法编写明确程序让计算机完成,这类任务正是 AI 所关注的。

2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

走入AI的世界

[title]走入AI的世界[heading2]1智能起源:极简AI发展史和生成式AI的革命性突破2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

其他人在问
有没有AI数字人的软件
以下是一些 AI 数字人的软件和相关信息: 互联网厂商: 腾讯: 阿里: 百度: 华为: 网易: 京东: 字节: 快手: 科大讯飞: 制作数字人的工具: HeyGen:AI 驱动的平台,可创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 DID:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后合成逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随时间和技术发展而变化。在使用这些工具时,请确保遵守相关使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 此外,关于数字人的相关技术还包括: 算法开源代码仓库: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition AI Agent: 大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 TTS: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 除了算法,人物建模模型可以通过手动建模实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2024-10-31
做ppt的ai有什么
以下是一些做 PPT 的 AI 产品: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,包含互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,卓 sir 分享了自己使用 AI 完成 PPT 的经历,用到的 AI 工具只有 3 个:GPT4、WPS AI 和 chatPPT。
2024-10-31
查找文献AI
以下是关于查找文献 AI 的相关信息: Txyz 网站: 是一个帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。 是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 Txyz 的按钮。 用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到想要的答案和内容。 在对话中提供论文参考,给出可信的背书。 论文写作的 AI 产品: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-31
ai生成视频教程
以下是关于 AI 生成视频的教程: 使用 Adobe Firefly 生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 AI 视频工具合集: Runway(有免费额度) 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 简单介绍:支持文生视频、图生视频,视频生视频;使用英文提示词;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持 16:9、9:16、1:1、4:3、3:4、21:9 尺寸,可设置种子值;图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同;生成好的视频可以延长时间,默认生成 4s 的视频。 Stable video(有免费额度) 网址:https://www.stablevideo.com/generate 知识库详细教程: 简单介绍:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-31
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
ChatGLM开发者团队介绍
ChatGLM 是一个开源的、支持中英双语的对话语言模型,底座是 GLM 语言模型。其相关信息如下: 地址: 简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 此外,基于 ChatGLM 还有在垂直领域微调的模型,如医疗领域的 MedChatGLM,其地址为: 。
2024-10-30
介绍一下智谱清言
智谱清言是由智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力有优化空间,知识百科方面与其他第一梯队模型相比稍显不足。 适合应用: 场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。 访问方式: PC 端: 移动端: 小程序端:搜索【智谱清言】进入【清影】智能体 在中国 AI 领域,智谱 AI 的模型具有开创性,其背后技术源自清华大学研发团队的科研成果转化。产品设计对标 ChatGPT,在逻辑推理和处理复杂提示词方面表现出明显优势。
2024-10-30
AI基本介绍
以下是关于 AI 的基本介绍: 新手学习 AI: 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。浏览入门文章,了解其历史、应用和发展趋势。 开始学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品创作,知识库中有实践作品和文章分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 AI 的基础内容: AI 背景知识:包括基础理论(人工智能、机器学习、深度学习的定义及关系)、历史发展(重要里程碑)。 数学基础:统计学基础(均值、中位数、方差等)、线性代数(向量、矩阵等)、概率论(条件概率、贝叶斯定理)。 算法和模型:监督学习(线性回归、决策树、支持向量机)、无监督学习(聚类、降维)、强化学习。 评估和调优:性能评估(交叉验证、精确度、召回率)、模型调优(网格搜索优化参数)。 神经网络基础:网络结构(前馈网络、卷积神经网络、循环神经网络)、激活函数(ReLU、Sigmoid、Tanh)。
2024-10-27
你能为我介绍一些最新的AI产品吗?能涉及变现的更好~
以下为您介绍一些最新的涉及变现的 AI 产品: 在电商领域: “电商:带货本地生活”,AI 数字人上岗带货本地生活电商,一个月多赚 3 万。 “电商:婴儿的四维彩超 AI 预测”,通过 AI 工具提前还原宝宝的四维彩超模样进行变现。 “电商:小红书 AI 绘画变现”,分享小红书最火的三种 AI 绘画类商品的变现方式。 在写作方面:“Grammarly、秘塔写作猫”是 AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,以及进行智能润色和内容创作辅助。 在商品推荐方面:“淘宝拍照搜商品”通过图像识别为用户推荐相似商品;“大众点评智能推荐”基于用户口味偏好推荐美食。 在语音助手方面:“小爱同学、Siri”可根据语音识别和自然语言理解技术为不同需求定制专属语音助手,如控制智能家居、回答问题、进行语音交互和任务处理等。 在健身领域:“Keep 智能训练计划”利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 在客服方面:“阿里小蜜等电商客服”为企业提供智能客服解决方案,可自动回答客户问题,处理订单查询等任务。
2024-10-25
midjourney最新功能介绍
Midjourney 的最新功能包括: 1. 风格参考和个性化模型混合使用: 可以混合不同的风格参考融入到混合中,最终风格的强度取决于提示中分配给每种风格的顺序。 能混合多个sref 代码,也能将风格参考图像 URL 和 sref 随机代码混合使用,还可为单个代码或 URL 加权。 能混合多个模型个性化代码,并使用相同的符号进行加权混合。 2. 编辑器更新: 图像编辑器:允许从计算机上传图像,然后进行扩展、裁剪、重绘、添加或修改场景中的元素。还推出了“图像重纹理化模式”,会估算场景的形状,然后重新应用纹理,使所有光照、材质和表面都发生变化。所有图像编辑操作都可以通过文本提示和区域选择来控制,且编辑器兼容模型个性化、风格参考、角色参考和图像提示功能。 AI 审核系统:正在测试一个更加智能、更加细致的 V2 AI 审核系统,会从整体上检查提示、图像、绘制蒙版以及生成的输出图像。 3. 使用规则:由于这些功能非常新,在第一个发布阶段,将这些功能开放给已生成至少 10,000 张图像的用户(年度会员可用)和过去 12 个月内一直是月度订阅用户的用户。
2024-10-25
copilot相关产品和市场介绍
以下是关于 Copilot 相关产品和市场的介绍: Copilot 相关产品: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于以问答形式解释科学文献中的文本、数字和表格。该公司成立于 2015 年,拥有大量论文数据积累和处理经验,并针对主流学术论文发布平台数据进行了优化,输出内容更精确。在更新版本中,支持解释专业词汇、深入研究、多语言互译、添加 URL 书签等功能,网址:https://typeset.io/ GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 GPT Code Copilot:您的人工智能软件开发助手,通过精确的分步指导和定制的代码解决方案提升编码之旅,网址:https://chat.openai.com/g/g2DQzU5UZlgptcodecopilot 市场情况: AIPRM for ChatGPT 是一款 SEO Prompt 模板插件,于 1 月 8 日上线,目前用户已超百万,Prompt Template 使用次数超过五千万次,B 端客户包括迪士尼、Adobe、Intel、微软、康泰纳仕,收费标准可参考:https://www.aiprm.com/ Teamsmart 是一款有趣的文档助手,功能与其他文字处理类插件类似,根据不同职业/技能提供一系列能力点不同的机器人,网址:https://www.teamsmart.ai/ Boring Report 是应对标题党的神器,可去除文章中的夸张表述,仅保留客观事实。 以上工具在功能和适用场景上可能有所不同,您可以根据自身需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65
2024-10-22
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
AI如何综合利用,可以高效率做哪些事情,总结一下
以下是 AI 综合利用并能高效率做事的一些方面: 在教学中: 帮助教师节省时间和提高生产力,如备课。 为学生制定个性化学习计划,分析学生表现并根据知识差距和个人学习风格创建定制的学习路径。 进行课程开发和创造学习沉浸体验,包括生成图像、文本和视频,转化为补充教育材料、作业和练习题。 与新的 AI 工具结合,为学生提供更好的口语和展示沟通准备工具。 但与优秀人类教师相比仍有差距,人机融合是趋势。 在政府工作中: 帮助政府为美国人民提供更好的结果,扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。 为机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 帮助机构通过更快速和高效的合同获取特定的 AI 产品和服务。 加速招聘 AI 专业人员。 在工作场景中: 营销方面,如蓝色光标 X 京东探索出 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程;定制营销报告,涵盖多种相关数据和分析。 办公方面,如利用 ChatGPT 生成 Markdown 语法内容,再借助 MindShow 转换为精美的 PPT。
2024-10-26
AI如何综合利用,可以高效率做哪些事情,总结一下短一点
以下是 AI 综合利用能够高效率做的一些事情: 在政府领域,帮助政府为民众提供更好的服务,如扩大机构的监管、治理和福利发放能力,降低成本并增强系统安全性。包括为机构使用 AI 发布指导,帮助机构更高效、更经济、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员并为员工提供相关培训。 推动经济增长和繁荣,通过降低监管不确定性,鼓励对 AI 的投资和应用,及时消除创新障碍。 在教学中,帮助教师节省时间和提高生产力,如分析学生表现制定个性化学习计划,生成图像、文本和视频用于课程开发和学习沉浸,结合新的 AI 工具为学生提供更好的沟通准备。但与优秀人类教师相比仍有差距,人机融合是趋势。
2024-10-26
总结一下,快速学ai的方式
以下是快速学习 AI 的方式: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,尤其要掌握提示词技巧。 4. 实践和尝试: 理论学习后进行实践巩固知识,尝试使用各种产品创作作品。 在知识库分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用体验。 此外,有人从去年 3 月开始使用 ChatGPT,在接触大量零散的 AIGC 信息后,总结了“AIGC 学习三步法”: 1. 系统深入学习和调研 AIGC,参加相关线下活动和在社群交流。 2. 梳理 AIGC 知识脉络。 3. 总结适合自己的学习方法并分享。
2024-10-25
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
AI的发展历史
AI 的发展历史如下: 起源追溯到上世纪 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,经历了多次起伏。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 最初符号推理流行,后因应用拓展困难出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被用作“神经网络”的同义词。
2024-10-25
AI的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因从专家提取知识并以计算机可读形式表现的复杂性和高成本,在很多情况下不适用,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 AI 技术的发展历程可概括为: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:视觉 语言模型如 CLIP、Stable Diffusion 及多模态融合。 3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:元学习、一次学习、提示学习等。 5. 可解释 AI:模型可解释性、因果推理、符号推理等。 6. 机器人学:强化学习、运动规划、人机交互等。 7. 量子 AI:量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 最初,查尔斯·巴贝奇发明计算机,用于按明确程序运算数字。现代计算机虽先进,但仍遵循相同受控计算理念。但有些任务如“根据照片判断一个人的年龄”无法明确编程,因不知具体步骤,这类任务正是 AI 感兴趣的。
2024-10-10
AI的概念以及发展历史
人工智能(Artificial Intelligence,简称 AI)是一门研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情的科学。 AI 的发展历史始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因无法实现应用场景大规模拓展,且从专家提取知识并用计算机可读形式表现并保持准确性的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”一词常被用作“神经网络”的同义词,因为多数成功案例基于神经网络方法。 例如在创建国际象棋计算机对弈程序时,方法不断变化。最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机虽更先进但仍遵循相同理念。但像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不知大脑完成此任务的具体步骤,而这类任务正是 AI 感兴趣的。
2024-09-29
agi的历史
AGI 的历史如下: 在 1990 年代末至 2000 年代,越来越多的人呼吁开发更普适的 AI 系统,该领域的学者试图确定可能构成更普遍智能系统的原则,“通用人工智能”(AGI)这一名词在 2000 年代初流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求,回应了早期 AI 研究的长期抱负和梦想。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,应关注 AGI 能完成什么,而不是它如何完成任务。 到 2024 年,出现了一些与 AGI 相关的情况,如全真 AI 虚拟人成熟、AR/VR 技术大规模商用、接近 AGI 的技术出现、人与 AI 配合的工作方式成为常态、AI 生产的数据量超过全人类生产数据量、“人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉、AI 引发的社会问题开始加重,结构性失业开始出现、AGI 对于地缘政治的影响开始显露等。
2024-09-13
AI的历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但这种方法因从专家提取知识并以计算机可读形式表现的复杂性和高成本,在很多情况下不适用,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 AI 技术发展历程如下: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):有深度神经网络、卷积神经网络、循环神经网络等。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循相同受控计算理念。有些任务如根据照片判断人的年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务正是 AI 感兴趣的。
2024-08-30