Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

2023年大模型发展有什么重要技术

Answer

2023 年大模型发展的重要技术包括以下方面:

  • 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。
  • 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。
  • 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。
  • 多模态大模型的应用:
    • 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。
    • 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 - 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

SuperCLUE:AI大模型2023年关键进展•百川智能发布Baichuan2—Turbo字节云雀大模型闭源通用大模型百川BaichuanYi-34B开源医疗汽车教育行业大模型MindGPT部分领域岐黄问道银河大模型..................序列猴子BlueLM AndesGPT孟子云天书玉言金融工业文化/零售/交通AInno-15B妙笔大模型

AGI万字长文(上)| 2023回顾与反思

2023年是大模型澎湃发展的一年:从22年11月ChatGPT的惊艳面世,到23年3月GPT4作为“与AGI(通用人工智能)的第一次接触”,到23年末多模态大模型的全面爆发,再到刚刚面世的Sora再次震惊世界。大模型给了世界太多的惊喜、惊讶、迷茫、甚至恐惧。有人问我:“AGI的出现可以和人类哪次发现/发明相比?”“大概是人类开始使用‘火’的时刻。万有引力、iPhone什么的都不值一提。”就像我在去年4月份文章中写的——在AGI和任何新事物的出现的时候:我们总是倾向于高估它的短期,但却低估它的长期。(前文[《AGI|高估的短期与低估的长期》](http://mp.weixin.qq.com/s?__biz=MzIwMTE0MDIwMA==&mid=2247484405&idx=1&sn=5e5c3104511adedad247d23149b14a80&chksm=96f33172a184b8647e786bf57685eb8e085e0f3f1e91aa3be797b49708b82135f41088959e2b&scene=21#wechat_redirect))目前正是这个大趋势的真实写照:

基于多模态大模型给现实世界加一本说明书

优点:适应性极好,通过提示词工程,方便「适应各种奇葩需求」。对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。大模型的API访问方式简化了边缘设备的要求,无论在Android、iOS、HarmonyOS()或各种嵌入式设备上都能方便适配。「AGI终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」缺点:大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到100~300ms,而大模型动则需要10秒的延时,限制了许多场景。模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。商业私有化部署是刚需,当下的开源模型离GPT4代差在半年以上,技术人员任重道远的。[heading2]未来展望[content]大模型三要素,算法,算力和数据,巧妇难为无米之炊。车载支架已就位,待我出门逛一圈,将后端采集的prompt和源图存入数据集,然后进一步展开工作。人生就是一趟单向旅途,你能所做的只是「尽量不错过沿途的风景」。2024年了,先提前给大家拜个早年。在大型语言模型面前,技术已经平权,要卷的只剩下「创意和工程化落地能力」了。

Others are asking
能否通过ai搜索网上数据如中国2023-2025GDP等并生成ppt的树状图
目前的 AI 技术在一定程度上可以辅助搜索和处理数据,但要直接通过 AI 搜索特定的如中国 2023 2025 年 GDP 这样准确且最新的数据,并生成 PPT 的树状图,还存在一些限制和挑战。 首先,数据的准确性和权威性是关键问题。AI 搜索到的数据可能并非来自官方权威渠道,存在误差和不可靠性。 其次,生成复杂的 PPT 树状图需要对数据有深入的理解和专业的设计能力,AI 虽然能够提供一些模板和初步的图形生成,但可能无法完全满足您对于专业性和美观性的要求。 不过,您可以利用一些 AI 工具来辅助您完成部分工作,例如通过数据搜索工具获取相关数据的线索,然后再进行人工核实和整理,最后使用专业的 PPT 制作软件来创建树状图。
2024-08-14
如何生成一个c4d风格的抽象模型
以下是生成一个 C4D 风格抽象模型的步骤: 1. 字体设计: 在 Adobe Illustrator 中,先用钢笔工具勾出字体形状,然后加粗扩展外观,删掉多余的线或者直接填充白色摆放好正确的图层样式。 2. 到 SD 里做效果: 模型:revanimatedv122 Control Weight:0.85 1,低一点的话形状会稍微随意点。 Control 预处理器:lineart_standard,模型:control_v11p_sd15_lineart Lora: Wool felt v1.0 https://civitai.com/models/113321 felt_v1.0 羊毛毡质感 https://www.liblibai.com/modelinfo/5d37951d90684318b4c596eb4a2ecacf 关键词:felt style, cute, wool material, made yarn, Light and clean background, C4D style, 3D rendering, <lora:symaozhan:0.4>, rich color palette Negative prompt: lowres, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, black (可以替换另一个 lora 和颜色得到不一样的结果)
2025-01-20
请推荐AI智能体,要求是通过通用语言大模型能直接输出思维导图的
以下为为您推荐的能通过通用语言大模型直接输出思维导图的 AI 智能体: 1. 多智能体 AI 搜索引擎: 第一步,快速搜索补充参考信息,使用工具 API WebSearchPro。 第二步,用模型规划和分解子任务,通过 GLM40520 的模型分析。 第三步,用搜索智能体完成子任务,智能体 API 的调用方式可参考相关文档。智能体 ID 为 659e54b1b8006379b4b2abd6,是连接全网内容,精准搜索,快速分析并总结的智能助手。 第四步,总结子任务生成思维导图,智能体 API 的调用方式可参考相关文档。智能体 ID 为 664e0cade018d633146de0d2,能够告别整理烦恼,将任何复杂概念秒变脑图。 2. AI 智能体:企业自动化的新架构Menlo Ventures:未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。Menlo 确定了三种不同主要用例和应用程序进程控制自由度的智能体类型,包括决策智能体、轨道智能体和通用人工智能体。 3. AI Share Card 插件:在开发过程中,将模板生成功能设计为固定的代码组件,让大模型专注于内容总结的功能。选用的是 GLM4flash,具有较长的上下文窗口、响应速度快、并发支持高、免费或低价等优点。
2025-01-20
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
Flux 的lora模型训练教程
以下是 Flux 的 Lora 模型训练教程: 1. 模型准备: 下载所需模型,如 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 不使用时模型存放位置随意,只要知晓路径,后续会引用。 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 2. 下载训练脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 训练步骤: 进入厚德云模型训练数据集:https://portal.houdeyun.cn/sd/dataset 步骤一·创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以提前将图片和标签打包成 zip 上传,zip 文件里图片名称与标签文件应当匹配,如图片名"1.png",对应的达标文件就叫"1.txt"。也可以一张一张单独上传照片。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 步骤二·Lora 训练: 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 触发词可有可无,取决于数据集是否有触发词。 模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 然后等待训练,会显示预览时间和进度条。训练完成的会显示出每一轮的预览图。鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 4. 低配置方案: 开源社区对低配置方案进行了优化,NF4 来自 controlnet 的作者,GGUF 则包含多个版本可以使用。 NF4 模型下载:https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors ,放置在 ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中),NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git GGUF 模型下载:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main ,GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUIGGUF 。 值得一提的是在最新版本的 ComfyUI 中 GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。 注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。 自己改的话就是把上面官方的 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。 相关生态发展很快,有 Lora、Controlnet、IPadpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。
2025-01-19
现在AI领域做语音模型比较好的有哪几家?音色复刻做的比较好的有哪些
在 AI 领域,做语音模型较好的有阿里,其 CosyVoice 语音合成模型有以下特点: 精细控制:能生成符合性别、年龄和个性特征的声音。 自然模拟:可模拟笑声、咳嗽和呼吸等人类语音自然特征。 情感和风格:能够为声音添加情感和风格,更具表现力。 GitHub 链接:https://github.com/FunAudioLLM/CosyVoice 相关链接:https://x.com/imxiaohu/status/1818942399705710700 。但关于音色复刻做的比较好的,上述信息中未明确提及。
2025-01-19
目前ai搜索功能最强的是什么模型
目前在 AI 搜索功能方面,Meta 于 2024 年 7 月 23 日发布的源模型 Llama 3.1 表现较为出色,其包含 8B、70B 和 405B 三个版本,其中 405B 是迄今为止最强大的模型,性能与 GPT4 和 Claude 3.5 相当。 在 AI 时代,搜索引擎结合大模型极大地增强了自身能力,比较优秀的公司有秘塔搜索(https://metaso.cn/)和 Perplexity(https://www.perplexity.ai/?loginsource=oneTapHome)。 AI 搜索结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 RAG 是一种通过引用外部数据源为模型做数据补充的方式,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时,且能够支持在本地运行。 多模态大模型具有多种能力,像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型有所区别,决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2025-01-19
我是一名公安技术人员,对于打击博彩打击涉网犯罪有没有什么ai可以帮助到我们,请提供一些ai工具并且告诉我应该如何使用
以下是一些 AI 在打击博彩和涉网犯罪方面的应用及工具: 利用强大的数据处理能力,如在儿童图像滥用数据库中,通过 AI 识别受害者和犯罪者。 公司提供的网络安全服务中,使用 AI 分析大量有关恶意软件的数据,并以超人类的速度应对网络安全漏洞,增强网络安全能力。 在使用这些 AI 工具时,需要注意以下几点: 确保数据的合法性、准确性和完整性,以保证分析结果的可靠性。 对 AI 系统进行持续的监测和评估,及时发现并解决可能出现的问题。 培训相关人员,使其能够熟练操作和理解 AI 工具提供的结果。
2025-01-16
我是一名公安技术人员,对于打击博彩打击涉网犯罪有没有什么ai可以帮助到我们
以下是一些 AI 在打击博彩和涉网犯罪方面的应用和帮助: 1. 利用强大的数据处理能力,如在儿童图像滥用数据库中,通过 AI 识别受害者和犯罪者,快速有效地在数字滥用图像中确定相关人员。 2. 增强网络安全能力,提供网络安全服务的公司越来越多地使用 AI 来分析大量有关恶意软件的数据,并以超人类的速度应对网络安全漏洞。随着网络威胁形势的不断变化,AI 的模式识别和递归学习能力在主动网络防御恶意行为方面可能发挥越来越重要的作用。 3. 拜登签署的行政命令中,建立了先进的网络安全计划,开发 AI 工具以查找和修复关键软件中的漏洞。同时,还下令制定国家安全备忘录,指导在 AI 和安全方面的进一步行动,以确保美国军事和情报机构在任务中安全、道德和有效地使用 AI,并采取行动对抗对手的军事 AI 应用。
2025-01-16
列举常用的剪辑软件、硬件设备、技术支持和3d动画软件
常用的剪辑软件有 Adobe Premiere Pro、Final Cut Pro、DaVinci Resolve 等。 常用的硬件设备包括高性能的计算机主机,具备强大处理能力的 CPU(如英特尔酷睿 i7 或 i9 系列)、大容量高速内存(16GB 及以上)、专业图形显卡(如 NVIDIA GeForce 系列)、大容量高速存储硬盘(如 SSD 固态硬盘),以及高分辨率和色彩准确的显示器。 常见的技术支持包括视频编码和解码技术(如 H.264、H.265 等)、特效插件(如 After Effects 插件)、色彩校正工具等。 常用的 3D 动画软件有 Maya、3ds Max、Blender 等。
2025-01-16
列举常用的剪辑软件、硬件设备以及技术支持,3d动画和ai视频生成
以下是关于剪辑软件、硬件设备、技术支持、3D 动画和 AI 视频生成的相关信息: AI 视频生成工具: Runway: 主要能力:文生视频(Text 2 Video)、Prompt+图像生成视频(Text+Image to Video)、无 Prompt 直接图片转视频(Image to Video)。 使用建议:Text to Video 时,优先使用右下角的“Free Preview”免费生成多组图片,然后从中选择一张进行视频生成以节约 credits。 近期更新:支持将 4s 的视频延长,每次延长需消耗 20 credits;9 月更新中,支持 110 级的 motion slider 调节,默认幅度为 5,同时支持水平、垂直、空间和旋转的运镜,并支持调节运动速度。 其他功能:提供 30 多项图片、视频处理能力,如 Inpainting 视频修复、Motion Tracking 视频主体跟随运动、Remove Any Background 删除视频元素/背景、3D Texture 生成 3D 纹理等。控制台上线了 Watch 模块,可查看官方精选的创意案例。推荐教程:ai 繪圖教學|Ai 动画:https://www.youtube.com/watch?v=Yj73NRmeSZM 由于您未明确提及剪辑软件、硬件设备和技术支持的具体需求,暂时无法为您详细列举。如果您能提供更具体的要求,我将为您提供更有针对性的信息。
2025-01-16
通用人工智能技术取得显著突破,中美竞争加剧
以下是为您整理的相关内容: 2024 年 7 月 1 日: 微软 AI CEO Mustafa Suleyman 在阿斯彭思想节上表示,AI 的发展将持续对社会产生深远影响。他强调中美在技术竞争中应该寻求合作,而不仅仅是竞争。在谈到监管时,他认为监管并非邪恶,历史上技术都曾被成功监管。对于 AGI(通用人工智能),他认为应该认真对待与之相关的安全风险,并建立全球治理机制。 小伙伴整理了关于阿里 D20 的 PPT,内容主要是 AI 在设计、教育、出海方向上的内容。 举办了 AI 切磋大会,共 12 地小伙伴线下参与,一起 AI 出图、出视频、做音乐等,动手实践,享受创造的乐趣,目标是让每个人都能玩转 AI。 2024 年 11 月 6 日: 李开复在采访中表达了对 AGI(通用人工智能)霸权的担忧,指出如果美国形成 AGI 垄断,将对全球科技生态产生深远影响。他认为,中国在研发廉价模型和推理引擎方面具备优势,尽管技术上可能落后,但在应用和落地速度上可与美国竞争。他强调,追求 AGI 的同时,中国应寻找另一条生态护城河的发展路径,确保多样化应用和更广泛的市场参与。 作者艾木三号提到,Geoffrey Hinton 强调词嵌入是理解自然语言的关键,通过将文字符号转化为向量,模型能进行有效的信息编码和推理。类比能力使得模型能够发现不同事物间的共同结构,从而展现创造力。
2025-01-14
学习AI技术应该从哪里开始
学习 AI 技术可以从以下几个方面开始: 偏向技术研究方向: 1. 数学基础:包括线性代数、概率论、优化理论等。 2. 机器学习基础:如监督学习、无监督学习、强化学习等。 3. 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:例如语言模型、文本分类、机器翻译等。 5. 计算机视觉:包含图像分类、目标检测、语义分割等。 6. 前沿领域:像大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:进行论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:例如 Python、C++等。 2. 机器学习基础:如监督学习、无监督学习等。 3. 深度学习框架:像 TensorFlow、PyTorch 等。 4. 应用领域:比如自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:包括数据采集、清洗、特征工程等。 6. 模型部署:涉及模型优化、模型服务等。 7. 行业实践:参与项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 对于新手学习 AI: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的模块,如图像、音乐、视频等。 掌握提示词的技巧。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 对于中学生学习 AI: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展,思考对未来社会的影响。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-12
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
AI for social science 有哪些重要的资源
以下是一些关于 AI for social science 的重要资源: 1. 《人工智能权利法案蓝图》:其中提到了公民权利、公民自由和隐私方面的内容,包括言论自由、投票自由以及免受歧视、过度惩罚、非法监视和侵犯隐私等,还涉及机会均等和获取关键资源或服务等方面。 2. AGI 万字长文(下)| 2024,分叉与洪流:如果从“AGI 已经出现”的阴谋论出发,AGI 所需要的基本资源无法回避,在能源领域,如可控核聚变技术,在 AI 的协助下有了一定进展。 3. 4.5.2016 EN:通过耦合注册表中的信息,研究者能够在诸如心血管疾病、癌症和抑郁症等广泛的医疗状况方面获得极有价值的新知识。在社会科学领域,基于注册表的研究使研究者能够获得关于失业、教育等一系列社会状况与其他生活状况的长期相关性的重要知识。通过注册表获得的研究结果提供了坚实、高质量的知识,可为基于知识的政策的制定和实施提供基础,提高许多人的生活质量,并提高社会服务的效率。
2024-12-10
最近一个月最重要的AI动态
以下是最近一个月的一些重要 AI 动态: 2024 年 4 月第二周:谷歌发布了一堆 AI 能力和升级,AI 音乐生成工具 Udio 发布,Open AI 发布 GPT4 Turbo 正式版,AI 画图应用 Ideogram 发布模型更新。 2024 年 4 月第三周:Meta 正式发布 Llama3 8B、70B 模型,Open AI 的 Assistants API 更新等,Reka Core 发布,一个 GPT4 级别的多模态 LLM,Mixtral8X22B 模型开源。 2024 年 4 月第四周:Open AI 的动态包括企业服务、起初研究和 ChatGPT 体验优化。 2024 年 5 月第一周:Claude 推出移动应用以及团队版计划,突然爆火的两款 SD 图像风格,亚马逊推出了 Amazon Q AI 助手。 2024 年 5 月第二周:Open AI 高强度预热发布会,Open AI 宣布和 Stack Overflow 达成合作,Controlnet 作者敏神发布 ICLight 光线融合生成项目。 此外,在过去的一段时间里,人工智能行业发展迅速。在过去 12 个月里,人工智能行业是重要的技术发展之一。从 2022 年 9 月到 2023 年 8 月,研究的工具访问量大幅增长。这一飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,炒作持续攀升,直到 2023 年 5 月达到峰值,之后虽有回落,但人们的兴趣仍然巨大。 另外,关于如何使用 AI 做事,目前似乎没有完善的用户文档,相关指南多通过 Twitter 影响者获得。作者基于自身经验为学生和读者准备的人工智能入门指南也需不断修改。
2024-11-15
帮我写一段120字的英文短文,回答这个问题:讨论终身学习的重要性
Lifelong learning is of great significance. It enables us to keep up with the everchanging world and acquire new skills and knowledge. It broadens our horizons, enhances our adaptability, and enriches our lives. It also helps us stay mentally active and engaged, promoting personal growth and development throughout our lives.
2024-11-04
近几个月,中国AI行业有什么重要进展?
以下是近几个月中国 AI 行业的一些重要进展: 过去 12 个月,人工智能行业流量增长显著。2022 年 9 月研究起始时,分析的工具产生 2.418 亿次访问,到 2023 年 8 月达到 28 亿次访问量。 从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台后,行业热度持续攀升,2023 年 5 月访问量达到约 41 亿的峰值。 2023 年上半年国内笃信靠资金和卡能发展类 GPT 架构,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI。目前国内最领先的模型水平大概在准 ChatGPT3.5 水平,和 GPT4 有差距。 百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”。 中国开源项目在今年赢得全球粉丝,成为积极开源贡献者。DeepSeek 在编码任务中表现出色,阿里巴巴发布的 Qwen2 系列视觉能力令人印象深刻,清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。
2024-11-04
对于AI小白,学习第一步是什么,最重要的是什么,能给个学习计划吗
对于 AI 小白,以下是学习 AI 的建议和学习计划: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想快速掌握 Python,可参考:,结合 ChatGPT,不懂的地方都可以提问。
2024-10-16