Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 图像识别的发展历程

Answer

AI 图像识别的发展历程如下:

  • 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。
  • 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。
  • CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。
  • ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。
  • 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

如果识别一个印刷体图片,我可能会怎么做神经网络解决的是未知规则的处理。先把图片都变成黑白大小变成固定尺寸和数据库的东西对比得出结论然而,这种情况过于理想化。不仅存在多种字体,即使对于印刷体,不同的拍摄角度也引入了多种例外情况。虽然存在图形算法进行矫正,但整体方法仍然是基于不断添加规则。这种方法本质上是试图通过不断增加和完善规则来解决问题,这显然是不可行的。虽然这种方法可以解决象棋的问题,但对围棋来说就非常困难了。围棋的每个节点有三种可能状态:白、黑或空,加上不同节点间状态的组合,现有的资源无法应对。神经网络专门处理未知规则的情况。将图片转换为黑白,调整图片至固定尺寸,与数据库中的内容进行对比,最终得出结论。神经网络的发展得益于生物学研究的支持,并且在数学上提供了一种方向,使其能够处理未知的情况,如手写体识别。关于这部分内容,非常建议看《这就是ChatGPT》这本书,它的作者是被称为”在世的最聪明的人”,研究神经网络几十年,创作了Mathematica、Wolfram等备受推崇的软件,这本书最特别之处还在于,导读序是美团技术学院院长刘江老师回顾了整个AI技术发展的历史,对于了解AI,大语言模型计算路线的发展,起到提纲挈领的作用,非常值得一读。本文写作过程中得到了[byzer-llm](https://github.com/allwefantasy/byzer-llm)作者祝威廉的大力支持,在此感谢。byzer-llm选择了一个非常特别的技术路线,在大模型时代显得尤为重要。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

CNN的结构是基于这两类细胞的级联模型,主要用于模式识别任务。它在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步!

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

该数据集对研究人员非常有用,正因为如此,它变得越来越有名,为最重要的年度DL竞赛提供了基准。仅仅七年时间,ImageNet让获胜算法对图像中的物体进行分类的准确率从72%提高到了98%,超过了人类的平均能力。ImageNet成为DL革命的首选数据集,更确切地说,是由Hinton领导的AlexNet卷积神经网络(CNN - Convolution Neural Networks)的数据集。ImageNet不仅引领了DL的革命,也为其他数据集开创了先例。自其创建以来,数十种新的数据集被引入,数据更丰富,分类更精确。神经网络大爆发在Deep Learning理论和数据集的加持下,2012年以来深度神经网络算法开始大爆发,卷积神经网络(CNN)、递归神经网络(RNN - Recurrent Neural Network)和长短期记忆网络(LSTM - Long Short-Term Memory)等等,每一种都有不同的特性。例如,递归神经网络是较高层的神经元直接连接到较低层的神经元。来自日本的计算机研究员福岛邦彦(Kunihiko Fukushima)根据人脑中视觉的运作方式,创建了一个人工神经网络模型。该架构是基于人脑中两种类型的神经元细胞,称为简单细胞和复杂细胞。它们存在于初级视觉皮层中,是大脑中处理视觉信息的部分。简单细胞负责检测局部特征,如边缘;复杂细胞汇集了简单细胞在一个区域内产生的结果。例如,一个简单细胞可能检测到一个椅子的边缘,复杂细胞汇总信息产生结果,通知下一个更高层次的简单细胞,这样逐级识别得到完整结果。配图05:深度神经网络如何识别物体(TensorFlow)

Others are asking
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
图像识别能力能用在哪些方面?
图像识别能力可以应用在以下方面: 1. 自动驾驶:帮助车辆识别道路、交通标志和其他物体。 2. 广告定向投放:根据图像内容精准推送相关广告。 3. 网页搜索结果优化:通过识别图像内容提高搜索结果的准确性。 4. 数字助手:如 Google Now 或 Amazon Alexa 中用于识别图像相关的指令。 5. 安防监控:识别异常行为或人物。 6. 医疗诊断:辅助医生识别医学影像中的病症。 7. 工业检测:检测产品的质量和缺陷。 8. 物流:识别货物的类别和状态。
2024-12-05
以图像识别,为小白科普相关知识和交叉领域,并为研究生提供参考选题
图像识别是指利用计算机技术对图像进行处理和分析,以识别和理解图像中的内容。 对于小白来说,图像识别是让计算机像人一样“看懂”图像。它基于深度学习、机器学习等技术,通过对大量图像数据的学习和训练,能够自动提取图像的特征,并进行分类、识别等操作。 图像识别的应用非常广泛,比如在安防领域,用于人脸识别、车牌识别等;在医疗领域,辅助疾病诊断、医学影像分析;在交通领域,实现交通标志识别、车辆检测等。 图像识别与多个领域存在交叉,如计算机视觉,它不仅关注图像的识别,还包括图像的生成、处理等;与人工智能的其他分支如自然语言处理也有结合,实现图文转换等功能;在工业领域,与自动化生产相结合,进行产品质量检测等。 对于研究生来说,以下是一些参考选题: 1. 基于小样本学习的图像识别算法研究。 2. 融合多模态信息的图像识别模型优化。 3. 针对特定场景(如复杂环境、低光照等)的图像识别改进。 4. 图像识别在医疗诊断中的精准度提升策略。 5. 结合深度学习和传统方法的图像识别性能比较。 6. 基于新型神经网络架构的图像识别应用。
2024-10-19
用ai进行图像识别
AI 在图像识别方面的应用较为广泛,以下为您介绍一些相关内容: 在自动驾驶技术中,利用 AI 进行图像识别、传感器数据分析和决策制定,使自动驾驶汽车能够自主导航和驾驶,如特斯拉(Tesla)、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 BERT 理念被应用于机器视觉领域,通过将图片分割处理,ViT 模型得以实现图像识别。 在深度学习中,图像识别实际是将图片转化为大量的图像单个像素点 RGB 值作为输入,再大量标注输出,形成神经网络。
2024-10-15
ai图像识别
以下是关于 AI 图像识别的相关内容: 判断一张图片是否为 AI 生成的方法: 通过画面风格、物品 bug 等细节进行辨别。但需注意,AI 在不断修正作图 bug,相关方法可能随时失效。 利用专门的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来判断,但可能存在误判,如将结构严谨的真实摄影作品识别为 AI 作图。 关于鉴别 AIGC 的讨论: 培养鉴别 AI 生成图片的技能需要训练大脑模型。 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 另外,人工智能在汽车行业有广泛应用: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定。 车辆安全系统:如自动紧急制动、车道保持辅助和盲点检测等。 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 预测性维护:分析车辆实时数据预测潜在故障和维护需求。 生产自动化:用于汽车制造的自动化生产线。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:优化电动汽车电池管理和充电策略。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等。 车辆远程监控和诊断:远程监控车辆状态并提供实时诊断和支持。
2024-10-15
我想写一个图像识别的代码
以下是关于图像识别的一些知识: 图像识别是计算机视觉领域中的一项重要任务,旨在从图像中识别和理解对象。 对于图像识别,我们可以通过以下方式来实现: 1. 获得每个数字或对象的一堆示例图像。 2. 为了判断输入的图像是否对应特定数字或对象,可以使用已有的样本进行逐像素比较。但人类在识别图像时,即使图像是手写的、有各种修改和扭曲,仍能准确识别,这表明人类的识别方式更高级。 图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。其大致原理是在图像中找到特定的目标并对其进行定位和识别。 希望这些信息对您编写图像识别代码有所帮助。
2024-08-28
如果我是一个只会使用大模型对话,不了解提示词逻辑,想要逐步学习ai相关知识的人,你推荐什么呢
以下是为您逐步学习 AI 相关知识的推荐: 1. 关于大模型的思考与探讨:普通用户使用大模型时,语言不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 2. 垂类模型与大模型公式:通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 3. 提示词的挖掘:写提示词未挖掘出大模型的天花板,还有提升空间。 4. 读书方法与提示词相关书籍推荐:读书最有效的是笨方法,不取巧,花时间读。并推荐了从数学、作家、代码、原理角度写大模型的四本书。 5. 内置思维链提示词:针对小技巧类的思维链提示词有新模型能力涌现和大模型内置两个趋势,但对于某些如 COT 这类的内置可能会改变大模型的原味,对此存疑。 6. 编写提示词的经验与思考: 原汁原味与生效元素的平衡:为得到原汁原味的效果,需考虑是否反刻某些元素;生效的小技巧大模型可能会内置,如指定角色效果有变化。 压缩与歧义的处理:找到凝练的核心概念(a)后,根据对象用不同方式(b)表达,核心在于找到准确的 a,而寻找 a 的方法目前主要是多读多泡在相关领域。 持续学习与输出:通过阅读吸收输入,转换为自己的语言输出,与大模型交互提炼精华,多输出促进吸收输入。 7. 调教 AI 和提示词: 是否需要提示词工程,是否需要学提示词:持反对观点,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。 和大模型交互需要遵循规则吗:不需要。网上流传最广的提示词方法论,是“给大模型一个角色”,这是一个好的策略,但不是必须遵循的原则,甚至所有规则都不是必须遵守的。可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。 用 Markdown 格式清晰表达问题:Markdown 通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。其优势包括结构清晰、格式化强调、适用性广。 8. 小白学习指南: 第一步:要有一个大模型帐号,至少已经熟悉和它们对话的方式。推荐 ChatGPT4 及国产平替: 第二步:看 OpenAI 的官方文档:
2025-03-06
如何利用ai修改论文?
利用 AI 修改论文可以从以下几个方面入手: 1. 内容生成和辅助写作: Grammarly 可通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot 是基于 AI 的重写和摘要工具,能帮助精简和优化论文内容。 2. 文献管理和搜索: Zotero 结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar 作为 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 3. 研究和数据分析: Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于进行数据分析和可视化。 Knitro 用于数学建模和优化,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX 结合了自动化和模板,能高效处理论文格式和数学公式。 Overleaf 是在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin 是广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 在实际修改过程中,还可以参考以下经验: 像南瓜博士那样,将原文喂给相关的 AI 工具,如 code interpreter ,让其写入到 dataframe 里,保存成文件备用。 让 AI 从情节合理与连贯性角度给出意见,并根据其修改。 对于修改细节,可反复尝试,发现效果好的 prompt ,如 Arthur 的结构化 prompt ,对于改得不好的地方进行简单纠正。 一轮修改完成后,可根据需要进行新一轮修改,调整修改的重点,如更强调字词和标点。 需要注意的是,使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具,同时要仔细甄别 AI 生成的内容,避免过度依赖。
2025-03-06
免费ai
以下是为您整理的关于免费 AI 的相关内容: 周鸿祎免费课 AI 系列第一讲: 周鸿祎认为在人工智能的技能和知识面前人人平等,学会人工智能是未来职业发展必备的基本能力。不懂人工智能可能会被淘汰。 免费课的关键词是免费、分享、科普、交流。 周鸿祎受李一舟启发,做免费科普课,分享 AI 知识,共同交流。课程会先从宏观开始,后面会宏观、微观结合,安排人工智能研究院的产品经理、技术专家配合讲解基本产品的使用方法等微观内容。 免费的 AI 理解论文服务: 对于计算机领域(尤其是人工智能话题),可以看看 https://www.aminer.cn/ ,该网站提供免费的 AI 理解论文服务(每篇论文只要处理一次便全站可看,成本很低)以及基础的 chat with paper 功能,多数论文都有免费的 PDF 下载链接。
2025-03-06
AI如何自动定制贴纸
以下是关于 AI 自动定制贴纸的相关信息: 扎克伯格在上周年度 Connect 会议上宣布推出集成在应用里的 AI 贴纸功能。此功能可以轻松地为聊天和故事生成自定义贴纸,使用 Llama 2 的技术和 Emu 图像生成基础模型,能够在几秒钟内将您的文本提示变成多个独特的高质量贴纸。 这项新功能将于下个月在 WhatsApp、Messenger、Instagram 和 Facebook Stories 中向部分英语用户推出。
2025-03-06
AI自动定制贴纸
以下是关于 AI 自动定制贴纸的相关信息: 扎克伯格在上周年度 Connect 会议上宣布推出集成在应用里的一系列 AI 功能,其中包括 AI 贴纸。该功能可以轻松地为聊天和故事生成自定义贴纸,使用 Llama 2 的技术和 Emu 图像生成基础模型,能够在几秒钟内将您的文本提示变成多个独特的高质量贴纸。这项新功能将于下个月在 WhatsApp、Messenger、Instagram 和 Facebook Stories 中向部分英语用户推出。
2025-03-06
什么是AI AGENT
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-03-06
deepseek公式的发展历程
DeepSeek 公式的发展历程如下: 2025 年 2 月 9 日,陈财猫分享提示词及小说创作心得,提到 DeepSeek 热度极高,微信指数达 10 亿多次,并准备先讲讲该模型的特点。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发了一场小范围的轰动。
2025-02-11
openAI过去几年的发展历程
OpenAI 在过去几年的发展历程如下: 在整个团队的努力下,迎来了技术高速发展的“黄金三年”,在自然语言处理领域取得突破性进展,推出了 GPT1、GPT2 和 GPT3 系列模型,每次模型迭代都使模型复杂度成指数级别上升,模型效果也越来越好。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 大约九年前创立,怀揣着对 AGI 潜力的坚定信念,渴望探索如何构建并使其惠及全人类。 创始人山姆·奥特曼回首创业历程,认为虽然有挑战和不愉快,但收获和成长巨大,也暴露出团队在管理上的不足。 展望 2025 年,坚信首批 AI Agent 将融入劳动力市场,目标已瞄准真正意义上的超级智能。新的一年充满反思,随着 AGI 脚步临近,是回顾公司发展历程的重要时刻。
2025-02-11
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
AI是怎么获得学习能力,是谁发现了这种学习模式,发展历程是什么?
AI 的学习能力主要通过以下几种方式实现: 1. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法旨在学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 3. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 AI 学习模式的发现并非由单一的个人完成,而是众多研究者共同努力的成果。 AI 的发展历程中有重要的技术里程碑,如 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。Transformer 比 RNN 更适合处理文本的长距离依赖性。对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。生成式 AI 生成的内容称为 AIGC。LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2024-12-04
AI的发展历程
AI 的发展历程可以分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可以追溯到上世纪的 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。
2024-12-04
ai诈骗发展历程
AI 诈骗是随着 AI 技术的发展而出现的一种新型诈骗手段,其发展历程与 AI 技术的整体发展密切相关。 AI 技术的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 随着 AI 技术的进步,AI 幻觉等问题也逐渐显现。AI 幻觉并非新问题,从早期的“人工智障”到如今“一本正经地胡说八道”,其复杂性和隐蔽性不断提升。这一演变反映了 AI 技术从依赖人工规则到依靠数据驱动,再到深度学习的发展过程,在变得更“聪明”的同时也面临更多挑战。 在神经网络方面,如 CNN 的结构基于大脑细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色,随着对大脑工作机制认知的加深,神经网络算法和模型不断进步。 目前,AI 技术的发展为诈骗手段的更新提供了可能,例如利用深度伪造技术制造虚假的语音、视频进行诈骗等。
2024-11-21
AI怎样赋能文旅产业发展
AI 赋能文旅产业发展主要体现在以下几个方面: 1. 全流程制作文旅宣传片:利用 AIGC 技术生成全国文旅宣传片,如《AI 我中华》,融合了 AI 生成视频及 AI 配音技术,将各地特色巧妙结合,展现大美中华。使用的工具包括 ChatGPT、Midjourney、Stable Diffusion、Runway、PS、AE、Ebsynth 等。 2. 提升 2D 美术效果:在 2D 美术中广泛使用图像生成技术,主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 提升了图像生成的精细化程度和提示对图像生成结果的控制能力。 3. 优化 3D 模型生成流程:在 3D 模型生成中,AI 可直接完成可调整的 3D 粗模,大大提升效率。 4. 改善游戏测试与优化环节:AI 在游戏测试环节中可模拟玩家、NPC 和游戏模型,在优化环节承担改善角色动画、编程加速、自动化游戏测试等功能,通过生成文字、图片、视频、音乐来缩减时间和资源消耗,快速识别并解决问题。 5. 丰富故事情节与 NPC 设计:在游戏设计中,AI 依托自然语言生成用法,用于角色与故事生成、游戏机制创新等方面,通过针对性训练数据集强化 NPC 模型的基础能力。 6. 创新音乐与音效生成:AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线,可用于填充游戏音效和音乐。 7. 提升玩家体验与个性化:AI 能评估玩家技能水平和游戏风格,动态调整游戏难度,还能在游戏运营中提供客服和分析服务。 8. 带来新的游戏玩法:如《Soul Chronicle》实现了实时 3D+AIGC+UGC,《Roleverse》可在平台内定制角色和编辑游戏世界。
2025-03-06
AI目前在美国和欧盟的发展与应用情况
以下是关于 AI 目前在美国和欧盟的发展与应用情况的综合回答: 在知识产权方面: 国际知识产权保护协会(AIPPI)与美国的立法观点相似,否认将 AI 包含进“作者”的范畴,但其生成的内容能否取得版权注册取决于生成物所体现创造性的多少。 欧盟认为人工智能生成的内容必须受到知识产权法律框架的保护,且可以通过对欧洲现有法律的解释解决人工智能的版权问题。 在人工智能工具的使用和流量方面: 大多数顶级人工智能公司位于美国,少数位于亚洲。 所有欧盟国家合计产生了 39 亿流量,占总量的 16.21%。欧洲以及澳大利亚和加拿大在人工智能投资和采用方面落后。 欧盟已经制定了第一个人工智能监管法案,但最近的研究表明当前的许多人工智能模型不符合欧盟对人工智能的监管。 在行业发展方面: 英伟达(NVIDIA)仍是全球最强大的公司之一,享受着市值达到 3 万亿美元的辉煌时刻,而监管机构也正在调查生成式人工智能(GenAI)内部的权力集中问题。 虽然全球治理努力陷入僵局,但国家和地区的人工智能监管继续推进,美国和欧盟通过了几份有争议的立法法案。 在研究进展方面: 前沿实验室的性能正在趋同,但 OpenAI 在推出 o1 后保持了其领先地位,规划和推理成为主要的研究前沿。 基础模型展示了它们超越语言的能力,多模态研究推动了数学、生物学、基因组学、物理科学和神经科学的发展。 在安全问题方面: 世界各地的政府模仿英国在人工智能安全方面建立国家能力,成立研究所并研究关键国家基础设施的潜在漏洞。 每一个提出的破解「修复」方案都失败了,研究人员开始关注更复杂、长期的攻击。
2025-03-06
aigent成熟后会朝哪个方向发展
AIgent 成熟后的发展方向可能包括以下几个方面: 1. 技术层面: 解决记忆力问题,包括提高记忆准确性、完善逻辑完整性、实现合理遗忘、优化长期记忆机制与 Token 长度和调用效率之间的制衡。 增强长 Token 能力,如刚发布的 Gemeni1.5 在研究中达到 10M 的 Token 长度,ChatGPT 也在近期官宣了“记忆能力”,国内也有公司专攻超长 Token。 提升“使用工具能力”,出现了如字节推出的 Coze 等中间层产品。 2. 应用层面: 以人的方式相互交流,自主搭建社会协作关系,最终实现模仿人、替代人。 成为“一人公司”的数字员工,以大语言模型为大脑,串联所有已有的工具和新造的 AI 工具。 从“能力积累期”进入“应用爆发期”,多智能体协作成为解决复杂问题的主流范式,专业化分工与场景深耕是必经之路。 从规则驱动转向学习驱动模式,自主能力由多个核心组件协同支撑,多智能体系统(MAS)成为复杂任务解决方案。 构建智能体能力评估的统一标准与方法,建立可度量、可对比的评价体系。
2025-03-06
最近ai有什么最新发展或者大事件?
以下是 AI 领域的一些最新发展和大事件: 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件,股价飙升。 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 7 月:快手开源 LivePortrait 模型,用于表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月:阿里云发布模型,海螺 AI 参战;Google 发布 GameGen 实时生成游戏;通义千问 2.5 系列全家桶开源;华为发布 cloud matrix 云计算基础设施;GPT 高级语音模式上线;Meta 发布 AI 眼镜 Orion;AI 代码编辑器 cursor 爆火。 10 月:Pika 发布 1.5 模型;诺奖颁发给 AI 奠基人;特斯拉发布机器人;Adobe 发布 Illustrator+Al 生成矢量图;智谱 AI 发布 autoGLM;腾讯混元开源 3D 模型。 此外,在法律法规方面,《促进创新的人工智能监管方法》指出:AI 概念并非新事物,但数据生成和处理方面的近期进展改变了该领域及其产生的技术。AI 已在许多领域带来重大进步和效率提升,如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、新药发现和应对气候变化的技术等。随着 AI 变得更强大,创新者探索新的使用方式,将有更多应用出现,其具有巨大的增长潜力和创造就业的能力。同时,也对 AI 特定风险及其潜在危害进行了初步评估,并提及了一些交叉的高级风险。
2025-03-05
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s): 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。这一时期专家系统、博弈论、机器学习初步理论等受到关注。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理等是研究重点。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 在发展过程中,AI 也经历了起伏。20 世纪 70 年代出现了“人工智能寒冬”,但随着计算资源变得便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。当前 AI 的前沿技术点包括: 1. 大模型如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2025-03-04
适合普通人(没有ai开发经验) 的ai发展方向有哪些
对于没有 AI 开发经验的普通人,以下是一些适合的 AI 发展方向: 1. 基础知识学习: 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 掌握数学基础,如统计学(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 2. 算法和模型: 熟悉监督学习(如线性回归、决策树、支持向量机)。 了解无监督学习(如聚类、降维)。 知晓强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络、循环神经网络。 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 巩固数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 涉足自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等领域。 5. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 6. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 此外,无论您是技术爱好者还是内容创作者,都可以: 技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试使用 AI 辅助编码。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor 等。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用。 内容创作者: 1. 利用 AI 辅助头脑风暴,获取创意方向。 2. 建立 AI 写作流程,从生成大纲到扩展段落等。 3. 探索多语言内容,借助 AI 辅助翻译和本地化。 4. 用 AI 工具优化 SEO,调整标题、元描述和关键词使用。
2025-03-02