直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI 图像识别的发展历程

回答

AI 图像识别的发展历程如下:

  • 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。
  • 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。
  • CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。
  • ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。
  • 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

如果识别一个印刷体图片,我可能会怎么做神经网络解决的是未知规则的处理。先把图片都变成黑白大小变成固定尺寸和数据库的东西对比得出结论然而,这种情况过于理想化。不仅存在多种字体,即使对于印刷体,不同的拍摄角度也引入了多种例外情况。虽然存在图形算法进行矫正,但整体方法仍然是基于不断添加规则。这种方法本质上是试图通过不断增加和完善规则来解决问题,这显然是不可行的。虽然这种方法可以解决象棋的问题,但对围棋来说就非常困难了。围棋的每个节点有三种可能状态:白、黑或空,加上不同节点间状态的组合,现有的资源无法应对。神经网络专门处理未知规则的情况。将图片转换为黑白,调整图片至固定尺寸,与数据库中的内容进行对比,最终得出结论。神经网络的发展得益于生物学研究的支持,并且在数学上提供了一种方向,使其能够处理未知的情况,如手写体识别。关于这部分内容,非常建议看《这就是ChatGPT》这本书,它的作者是被称为”在世的最聪明的人”,研究神经网络几十年,创作了Mathematica、Wolfram等备受推崇的软件,这本书最特别之处还在于,导读序是美团技术学院院长刘江老师回顾了整个AI技术发展的历史,对于了解AI,大语言模型计算路线的发展,起到提纲挈领的作用,非常值得一读。本文写作过程中得到了[byzer-llm](https://github.com/allwefantasy/byzer-llm)作者祝威廉的大力支持,在此感谢。byzer-llm选择了一个非常特别的技术路线,在大模型时代显得尤为重要。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

CNN的结构是基于这两类细胞的级联模型,主要用于模式识别任务。它在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步!

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

该数据集对研究人员非常有用,正因为如此,它变得越来越有名,为最重要的年度DL竞赛提供了基准。仅仅七年时间,ImageNet让获胜算法对图像中的物体进行分类的准确率从72%提高到了98%,超过了人类的平均能力。ImageNet成为DL革命的首选数据集,更确切地说,是由Hinton领导的AlexNet卷积神经网络(CNN - Convolution Neural Networks)的数据集。ImageNet不仅引领了DL的革命,也为其他数据集开创了先例。自其创建以来,数十种新的数据集被引入,数据更丰富,分类更精确。神经网络大爆发在Deep Learning理论和数据集的加持下,2012年以来深度神经网络算法开始大爆发,卷积神经网络(CNN)、递归神经网络(RNN - Recurrent Neural Network)和长短期记忆网络(LSTM - Long Short-Term Memory)等等,每一种都有不同的特性。例如,递归神经网络是较高层的神经元直接连接到较低层的神经元。来自日本的计算机研究员福岛邦彦(Kunihiko Fukushima)根据人脑中视觉的运作方式,创建了一个人工神经网络模型。该架构是基于人脑中两种类型的神经元细胞,称为简单细胞和复杂细胞。它们存在于初级视觉皮层中,是大脑中处理视觉信息的部分。简单细胞负责检测局部特征,如边缘;复杂细胞汇集了简单细胞在一个区域内产生的结果。例如,一个简单细胞可能检测到一个椅子的边缘,复杂细胞汇总信息产生结果,通知下一个更高层次的简单细胞,这样逐级识别得到完整结果。配图05:深度神经网络如何识别物体(TensorFlow)

其他人在问
以图像识别,为小白科普相关知识和交叉领域,并为研究生提供参考选题
图像识别是指利用计算机技术对图像进行处理和分析,以识别和理解图像中的内容。 对于小白来说,图像识别是让计算机像人一样“看懂”图像。它基于深度学习、机器学习等技术,通过对大量图像数据的学习和训练,能够自动提取图像的特征,并进行分类、识别等操作。 图像识别的应用非常广泛,比如在安防领域,用于人脸识别、车牌识别等;在医疗领域,辅助疾病诊断、医学影像分析;在交通领域,实现交通标志识别、车辆检测等。 图像识别与多个领域存在交叉,如计算机视觉,它不仅关注图像的识别,还包括图像的生成、处理等;与人工智能的其他分支如自然语言处理也有结合,实现图文转换等功能;在工业领域,与自动化生产相结合,进行产品质量检测等。 对于研究生来说,以下是一些参考选题: 1. 基于小样本学习的图像识别算法研究。 2. 融合多模态信息的图像识别模型优化。 3. 针对特定场景(如复杂环境、低光照等)的图像识别改进。 4. 图像识别在医疗诊断中的精准度提升策略。 5. 结合深度学习和传统方法的图像识别性能比较。 6. 基于新型神经网络架构的图像识别应用。
2024-10-19
用ai进行图像识别
AI 在图像识别方面的应用较为广泛,以下为您介绍一些相关内容: 在自动驾驶技术中,利用 AI 进行图像识别、传感器数据分析和决策制定,使自动驾驶汽车能够自主导航和驾驶,如特斯拉(Tesla)、Waymo 和 Cruise 等公司都在开发和测试自动驾驶汽车。 BERT 理念被应用于机器视觉领域,通过将图片分割处理,ViT 模型得以实现图像识别。 在深度学习中,图像识别实际是将图片转化为大量的图像单个像素点 RGB 值作为输入,再大量标注输出,形成神经网络。
2024-10-15
ai图像识别
以下是关于 AI 图像识别的相关内容: 判断一张图片是否为 AI 生成的方法: 通过画面风格、物品 bug 等细节进行辨别。但需注意,AI 在不断修正作图 bug,相关方法可能随时失效。 利用专门的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来判断,但可能存在误判,如将结构严谨的真实摄影作品识别为 AI 作图。 关于鉴别 AIGC 的讨论: 培养鉴别 AI 生成图片的技能需要训练大脑模型。 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 另外,人工智能在汽车行业有广泛应用: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定。 车辆安全系统:如自动紧急制动、车道保持辅助和盲点检测等。 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 预测性维护:分析车辆实时数据预测潜在故障和维护需求。 生产自动化:用于汽车制造的自动化生产线。 销售和市场分析:分析市场趋势、消费者行为和销售数据。 电动化和能源管理:优化电动汽车电池管理和充电策略。 共享出行服务:优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等。 车辆远程监控和诊断:远程监控车辆状态并提供实时诊断和支持。
2024-10-15
我想写一个图像识别的代码
以下是关于图像识别的一些知识: 图像识别是计算机视觉领域中的一项重要任务,旨在从图像中识别和理解对象。 对于图像识别,我们可以通过以下方式来实现: 1. 获得每个数字或对象的一堆示例图像。 2. 为了判断输入的图像是否对应特定数字或对象,可以使用已有的样本进行逐像素比较。但人类在识别图像时,即使图像是手写的、有各种修改和扭曲,仍能准确识别,这表明人类的识别方式更高级。 图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。其大致原理是在图像中找到特定的目标并对其进行定位和识别。 希望这些信息对您编写图像识别代码有所帮助。
2024-08-28
图像识别能力强的大模型
目前,图像识别领域中一些能力较强的大模型包括: 1. 百度智能云的AI图像识别技术:这项技术利用深度学习算法模拟人脑的神经元网络,对图像进行预处理、特征提取和分类器识别,广泛应用于安全、医疗、交通等领域 。 2. 北京大学张史梁长聘副教授课题组的多模态大模型Pink和LocLLM:这些模型通过为大语言模型添加图像细粒度指代分析能力,实现了对图像中特定物体和人体的细粒度感知,并在多模态任务、指代感知任务以及人体感知任务上展现出优秀的性能和泛化能力 。 3. 百度AI的通用物体和场景识别:这项服务能够识别超过10万类常见物体和场景,支持获取识别结果对应的百科信息,并且可以使用EasyDL定制训练平台进行定制识别 。 4. Vision Transformer :由Google Brain团队推出,将传统的CNN替换为Transformer架构,实现了在图像识别任务中的显著性能提升 。 5. Meta开源的DINOv2视觉大模型:这些模型使用自监督的方式进行训练,无需微调就能用于分类、分割、图像检索、深度估计等多种视觉任务 。 这些大模型展示了AI在图像识别领域的强大能力,能够处理各种复杂的视觉任务,并在不同的应用场景中发挥作用。
2024-07-22
图像识别
图像识别是人工智能领域中的一个重要分支,具有以下特点和原理: 图像识别实际上是将图片转化为大量的图像单个像素点的 RGB 值作为输入,并通过大量标注输出,从而形成神经网络(深度学习)。 在一些工具和应用中,如 Magic Brush,具有自动识别功能。上传图片后,PixVerse 会自动识别图中元素,例如天空、树、人、狗、猫等。当勾选相应元素,如天空,会自动对该元素添加运动区域。若某些画面中的元素未出现在列表中,则说明未能被自动识别,需手动通过笔刷选择该区域。 图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测是计算机视觉领域中的重要任务,目标是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。其大致原理是在图像中找到特定的目标并对其进行定位和识别。 总之,图像融合和目标检测都是计算机视觉领域中重要的技术,在多个领域都有广泛的应用前景和研究价值。
2024-07-22
年终汇报及活动方案最好用的ai
以下是为您提供的一些关于年终汇报及活动方案的 AI 相关信息: 在智能纪要方面,有多种相关技术和活动,如 AI 音乐创作,通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区;数字人语音合成,介绍了声音克隆技术及微软、阿里等的成果,常用 JPT service;config UI 的应用能降低成本、提高效率,在图书出版、引流等方面有应用,社区有相关共学课程。 社区共创项目丰富,包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动,会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战,如 10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升,接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人部分材料需尽快购买。 在自媒体发布与流量扶持方面,在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法,设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告,可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 同时,为您提供一些会议总结相关的 AI 工具: 但目前没有直接针对年终汇报及活动方案最好用的 AI 的明确推荐。
2024-11-14
天工AI有哪些使用场景
天工 AI 的使用场景较为广泛,包括但不限于以下方面: 搜索领域:采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 数字内容创作:为艺术家和创作者提供高效、创新的方法来生成相关内容。 游戏开发和动画制作:能够快速、高质量地创建 3D 模型。 教育和培训:利用 3D 内容提供更具吸引力和互动性的学习体验。 医疗行业:为诊断、治疗规划和患者教育提供精确的 3D 模型支持。 建筑和工程:用于设计、可视化和项目规划中的 3D 模型创建。
2024-11-14
即梦AI的主要功能
即梦 AI 是一款强大的视频生成工具,具有以下主要功能: 1. 视频生成:可根据用户提供的图片(首帧/首尾帧)、prompt(文字指令)和各种参数设置生成高质量、稳定且高动态的视频。 2. 生成时长: 全面提升单次生成时长,并提供标准模式和流畅模式两种选择。 标准模式适用于通用场景,支持时长有 3s、6s、9s、12s。 流畅模式适用于运动强度高的场景,如赛车飞驰,支持时长有 4s、6s、8s。 视频延长:全面提升延长效果,可基于选择的模式选择二次生成的时长,并支持 prompt 控制,同一个素材支持两次延长。 3. 可控性: 首尾帧权重超强优化,输入 prompt 可精准控制过渡效果。 运镜控制:新增移镜、摇镜,并支持三档运镜幅度设定。 4. 智能画布:提供多种创意案例,如 LOGO 玩法等。 优点: 动效方面采取激进策略,在需要很强动效表现时可考虑使用。 对画面识别非常准确。 在人物微表情、汽车行驶等画面的表现出色。 具有首尾帧相连的功能。 对于简单画面有不错的表现力,能让主体完成超出预期的流畅动效,尤其是简单的三维物体。 人物的面部特写表现惊艳。 缺点: 精度不太够,后期需要用到 topaz video 等超分工具再放大。 丰富的动效带来画面容易“出轨”的问题,导致画面稳定性不足。 为了更丰富的动效,视频的输出存在掉帧等问题。 运动幅度不能开得太过,否则会有用力过猛的感觉,且画面容易崩塌。 总体 3 6s 的生成长度一般。 即梦 AI 官网:https://jimeng.jianying.com/
2024-11-14
AI 网站哪一个写文章好
以下是一些在写文章方面表现较好的 AI 网站和工具: 1. 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常选 Latex 和 Overleaf,一般文章和商业文档可选 Grammarly 和 PandaDoc 等。 2. 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多平台和集成。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 3. 利用 AI 打造爆款公众号文章: 关键在于提供清晰且具有指导性的提示词(prompt)。好的提示词能让 AI 更准确理解需求并生成符合预期的内容。如“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和设定文章基本结构、内容要求。最终产出的内容可能需要微调以符合预期和公众号风格。
2024-11-14
如何系统性的学习如何使用ai
以下是关于如何系统性学习使用 AI 的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习,比如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,比如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2024-11-14
怎么学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14
AI大模型历程
AI 大模型的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 自 2022 年 11 月 30 日 ChatGPT 发布以来,国内大模型大致经历了三个阶段:准备期(ChatGPT 发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 当前,随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,并广泛应用于多个行业和领域。当前 AI 的前沿技术点包括:大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型如 CLIP、Stable Diffusion 以及多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2024-11-05
AI的发展历程
AI 的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法的局限性,20 世纪 70 年代出现了“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2024-10-29
大语言模型发展历程
大语言模型的发展历程如下: 2017 年,发布了《Attention Is All You Need》论文,为后续发展奠定基础。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),其创新性地采用双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)以更好地推断语义信息,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 此外,OpenAI 的 GPT3.5 是其大语言模型 GPT 系列中多年来最完善的一次迭代,并通过 ChatGPT 成功推向大众,在短时间内实现了用户的快速增长。 在语言模型的发展中,20 世纪 80 年代发明了递归神经网络(RNN)处理单词序列,但存在训练速度慢和遗忘问题。1997 年发明的长短期记忆(LSTM)网络解决了部分问题,但语言能力有限。 2020 年中期,Lewis 等人提出检索增强生成(RAG),它将外部数据检索整合到生成过程中,提高了模型提供准确和相关回答的能力。RAG 的演进轨迹在四个不同阶段展开,2017 年的创始阶段主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。
2024-10-15
ai发展历程
AI 技术的发展历程大致可分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2024-09-30
详细介绍aigc技术发展历程
AIGC 技术的发展历程主要包括以下几个重要阶段: 1. 机器学习阶段: 根据卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)的定义,机器学习是指“计算机程序能从经验 E 中学习,以解决某一任务 T,并通过性能度量 P,能够测定在解决 T 时机器在学习经验 E 后的表现提升”。 数据获取:为机器提供用于学习的数据。 特征工程:提取出数据中的有效特征,并进行必要的转换。 模型训练:学习数据,并根据算法生成模型。 评估与应用:将训练好的模型应用在需要执行的任务上并评估其表现,如果取得了令人满意的效果就可以投入应用。 2. 图灵测试与起源阶段:1950 年,艾伦·图灵发表了一篇划时代的论文《计算机器与智能》,探讨了让机器具备人类一样智能的可能性。论文在开篇就抛出了一个有趣的问题:“机器能思考吗?” 3. 行为主义阶段: 行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。 与符号主义相比,行为主义不强调对智能的深层理解,而是通过观察和模仿行为来实现智能控制。 这一流派在智能机器人和自动化控制系统领域有广泛应用,21 世纪末随着相关技术的进步,行为主义开始受到更多关注,尽管它在智能模拟方面存在局限性,如缺乏对智能本质的深入理解。
2024-09-28
AIGC技术发展历程
AIGC 技术的发展历程如下: 起源:1950 年,艾伦·图灵发表了划时代的论文《计算机器与智能》,探讨了让机器具备人类一样智能的可能性,提出了“机器能思考吗?”这一问题,开启了 AIGC 技术的探索。 行为主义:行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。21 世纪末随着相关技术的进步,行为主义在智能机器人和自动化控制系统领域受到更多关注,尽管存在对智能本质缺乏深入理解等局限性。 发展现状:GenAI(生成式 AI)作为一种强大的技术,能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。
2024-09-28
你觉得ai+健康 会如何发展 ,优势和挑战分别是什么
AI 在健康领域的发展具有巨大潜力,同时也面临着一些优势和挑战。 优势方面: 有助于推进医疗保健中负责任地使用 AI,促进开发价格合理且能拯救生命的药物。 能够为教育者提供支持,例如在学校中提供个性化辅导,从而变革教育模式。 挑战方面: 存在工作场所监视、偏见和岗位替代等风险,可能影响劳动者权益。 可能会出现对劳动者补偿不足、不公平评估工作申请以及妨碍劳动者组织的情况。 对于医疗保健中 AI 应用的安全性需要建立相应的程序来接收和处理相关报告,并采取补救措施。 总之,AI 在健康领域的发展前景广阔,但需要妥善应对潜在的挑战,以实现其最大的价值和效益。
2024-11-14
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
2023年大模型发展有什么重要技术
2023 年大模型发展的重要技术包括以下方面: 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。 多模态大模型的应用: 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
2024-11-14
AI发展史
AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪: 1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 过去的其他 AI 更多应用于完成人脸识别等分类判断任务,而生成式 AI 的诞生让人们看到其在写文章、画画、写歌等方面展现出类似人类的创作交流能力。
2024-11-11
Ai技术现在的发展状况
AI 技术的发展状况如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 学习路径: 偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 需要注意的是,无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-11-09
AI技术发展状态
AI 技术的发展状态如下: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 对于新手学习 AI,建议: 持续学习和跟进:AI 是快速发展的领域,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 使用 AI 做事时需要注意: AI 是一种工具,并不总是正确的工具。要考虑其弱点,仔细思考是否适合计划应用的目的。 要了解许多道德问题。AI 可能被用于侵犯版权、作弊、窃取他人工作或操纵。特定 AI 模型的构建方式以及谁从其使用中受益,通常是复杂且不特别清楚的问题。最终,使用者有责任以道德的方式使用这些工具。
2024-11-09