直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?

回答

对于 AI 小白的进阶学习,您可以参考以下步骤:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,因其上手容易且实用。
  4. 实践和尝试:
    • 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。
    • 分享实践后的经验和成果。
  5. 体验 AI 产品:
    • 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。

同时,您还需要掌握以下基础知识:

  • AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  • 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  • 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  • 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  • 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

其他人在问
年终汇报及活动方案最好用的ai
以下是为您提供的一些关于年终汇报及活动方案的 AI 相关信息: 在智能纪要方面,有多种相关技术和活动,如 AI 音乐创作,通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区;数字人语音合成,介绍了声音克隆技术及微软、阿里等的成果,常用 JPT service;config UI 的应用能降低成本、提高效率,在图书出版、引流等方面有应用,社区有相关共学课程。 社区共创项目丰富,包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动,会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战,如 10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升,接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人部分材料需尽快购买。 在自媒体发布与流量扶持方面,在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法,设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告,可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 同时,为您提供一些会议总结相关的 AI 工具: 但目前没有直接针对年终汇报及活动方案最好用的 AI 的明确推荐。
2024-11-14
天工AI有哪些使用场景
天工 AI 的使用场景较为广泛,包括但不限于以下方面: 搜索领域:采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 数字内容创作:为艺术家和创作者提供高效、创新的方法来生成相关内容。 游戏开发和动画制作:能够快速、高质量地创建 3D 模型。 教育和培训:利用 3D 内容提供更具吸引力和互动性的学习体验。 医疗行业:为诊断、治疗规划和患者教育提供精确的 3D 模型支持。 建筑和工程:用于设计、可视化和项目规划中的 3D 模型创建。
2024-11-14
即梦AI的主要功能
即梦 AI 是一款强大的视频生成工具,具有以下主要功能: 1. 视频生成:可根据用户提供的图片(首帧/首尾帧)、prompt(文字指令)和各种参数设置生成高质量、稳定且高动态的视频。 2. 生成时长: 全面提升单次生成时长,并提供标准模式和流畅模式两种选择。 标准模式适用于通用场景,支持时长有 3s、6s、9s、12s。 流畅模式适用于运动强度高的场景,如赛车飞驰,支持时长有 4s、6s、8s。 视频延长:全面提升延长效果,可基于选择的模式选择二次生成的时长,并支持 prompt 控制,同一个素材支持两次延长。 3. 可控性: 首尾帧权重超强优化,输入 prompt 可精准控制过渡效果。 运镜控制:新增移镜、摇镜,并支持三档运镜幅度设定。 4. 智能画布:提供多种创意案例,如 LOGO 玩法等。 优点: 动效方面采取激进策略,在需要很强动效表现时可考虑使用。 对画面识别非常准确。 在人物微表情、汽车行驶等画面的表现出色。 具有首尾帧相连的功能。 对于简单画面有不错的表现力,能让主体完成超出预期的流畅动效,尤其是简单的三维物体。 人物的面部特写表现惊艳。 缺点: 精度不太够,后期需要用到 topaz video 等超分工具再放大。 丰富的动效带来画面容易“出轨”的问题,导致画面稳定性不足。 为了更丰富的动效,视频的输出存在掉帧等问题。 运动幅度不能开得太过,否则会有用力过猛的感觉,且画面容易崩塌。 总体 3 6s 的生成长度一般。 即梦 AI 官网:https://jimeng.jianying.com/
2024-11-14
AI 网站哪一个写文章好
以下是一些在写文章方面表现较好的 AI 网站和工具: 1. 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常选 Latex 和 Overleaf,一般文章和商业文档可选 Grammarly 和 PandaDoc 等。 2. 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多平台和集成。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 3. 利用 AI 打造爆款公众号文章: 关键在于提供清晰且具有指导性的提示词(prompt)。好的提示词能让 AI 更准确理解需求并生成符合预期的内容。如“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”这样的提示词能为 AI 提供明确指导和设定文章基本结构、内容要求。最终产出的内容可能需要微调以符合预期和公众号风格。
2024-11-14
如何系统性的学习如何使用ai
以下是关于如何系统性学习使用 AI 的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习,比如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,比如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2024-11-14
怎么学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14
我要用Sd做图片细化,要怎么做?给出具体方法
以下是使用 SD 做图片细化的具体方法: 1. 对于更精确的蒙版,如人物的眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 后,AI 会自动下载模型,若没有魔法,可去云盘下载并放到指定文件目录下。在检测提示词中输入相关内容,如“eye”,AI 可自动检测并设置蒙版,还可通过预览箱体得到编号来选择调整单一部分。选择要修改的蒙版上传到重绘蒙版中,并添加提示词,如“闭眼”,点击生成即可完成修改。 2. 给人物换背景时,加载生成的背景蒙版。大模型选择 revAnimated_v122,正向提示词可设为“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可将其放入图生图中,使用 tile 模型做整体细化,还能给人物衣服添加国风元素。 3. SD 扩图时,若原本图片尺寸为 1152x1152 需增高高度,可设置为(1152x1526)。ControlNet 设置方面,若无法识别处理,可采取以下措施:提高 ControlNet 的权重(增加预处理权重,降低引导介入时机直到为 0,增加引导终止时机直到为 1);降低重绘幅度(高清修复大图时使用);把原始的黑白二维码叠加在二维码上方(正片叠底,保留 4 个定位点,擦去其他地方),调节透明度;使劲抽卡。 4. SD 放大通常重绘幅度设置在 0.3 以下,使用 tile 模型时可提高重绘幅度,如保持重绘幅度为 1 放大 1.5 倍绘图,能加强画面细节且不崩坏。对于草图,可将其导入 ControlNet 中,添加提示词进行细化,还可通过改变控制模式和增加关键词来优化效果,如实现随机提示词转换,用提示词对参考图做出调整。
2024-11-09
我要按怎样的步骤学习AI
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己的实践成果。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 为了在医疗保健中让 AI 产生真正的改变,应投资创建一个模型生态系统,让“专家”AI 像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,从该领域出色的实践者那里学习,获得有助于在复杂情况下确定最佳答案的直觉。对于 AI,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和期望一个生成模型解决所有问题。例如,先训练生物学的模型,再是化学的模型,然后添加特定于医疗保健或药物设计的数据点。预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需要经历多年相关学习和研究,这种学习方式有助于培养处理涉及细微差别决策的直觉。
2024-11-08
我要怎么用waytoAGI学东西
WaytoAGI 是一个由热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,具有以下功能和特点: 1. 学习途径:参加如 AJ 组织的 wayto AGI 活动,可以认识很多小伙伴和前辈,从中学习到很多 AI 相关知识。 2. 网站功能: 和 AI 知识库对话,可询问任何关于 AI 的问题。 提供集合的精选 AI 网站,按需求找到适合的工具。 集合精选的提示词,可复制到 AI 对话网站使用。 呈现知识库的精华内容。 3. 离谱村:是由 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,都可以通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,是灵魂的避风港,激励着人们发挥想象力,创造独特生活方式。 您可以通过参与相关活动、使用网站的各项功能以及参与离谱村的共创等方式,在 WaytoAGI 学习到丰富的 AI 知识。
2024-11-08
我要学习prompt,给我指定一个学习计划
以下是为您制定的学习 prompt 的计划: 一、准备阶段 首先,您需要拥有一个大模型账号,并熟悉与它们对话的方式。推荐使用性能较强的 ChatGPT4 ,国产平替有 。 二、基础学习 1. 阅读 OpenAI 的官方文档,包括: 同时,也可以参考我和熊猫 Jay 在 AGI 分享的中文精读版官方 Cookbook: 三、深入学习与实践 1. 学习 Claude 官方提示词,中文版(含 API Prompt),包括为给定主题创建全面的课程计划,如: 明确课程目标,使其清晰、可衡量,并与教育标准一致。 提供详细大纲,分为介绍、主要活动和总结,描述教学方法、学习活动和资源。 采用差异化策略适应不同学习需求和风格。 确定评估方法以评估学生的理解和掌握程度。 2. 进行苏格拉底式对话,就给定话题通过反复询问激发更深层次的思考和反思。 3. 针对给定主题生成同音连绵的词语和句子。 4. 掌握 Prompt 句式,例如: 对于“我想了解xxxx,我应该向你问哪些问题?”等句式,明确哪些是您不知道而 GPT 知道的。 对于“我理解的 xxx 是这样的,你觉得我的理解对吗?”等句式,进行认知的检验。 对于“我在 xxx 问题上遇到困难,你能提供一些可能的解决方案或建议吗?”等句式,实现认知的扩充。 希望这个学习计划对您有所帮助,祝您学习顺利!
2024-11-07
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
我要创建一个工作流,需要怎么创建,用到什么工具,这些工具在哪可以找到
以下是在 Coze 上创建工作流的步骤和所需工具: 1. 进入 Coze 平台,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建完成后,整个编辑视图与功能如下: 左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。例如涉及思维导图、英文音频等无法通过 LLM 生成的内容,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。例如中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 4. 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 此外,在扣子平台上,插件就像一个工具箱,里面可以放一个或者多个工具,称为 API。目前扣子平台已有很多不同类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等,还有一些能处理多种任务的模型。若现有的插件不符合需求,还可自己制作插件并加入所需的 API。工作流就像可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,由多个小块块(节点)组成,如大语言模型 LLM、自己写的代码、做判断的逻辑等,开始和结束都有特定的小块块,不同小块块可能需要不同信息才能工作,信息包括引用前面小块块给出的和自己设定的。
2024-10-29
嗨喽,我刚接触ComfyUI,想从简单的案例开始,一步步挑战更复杂的项目。有没有什么好地方可以找到这种分层次(基础-进阶)的学习案例呢?我想边学边练,这样印象更深刻。
以下是在飞书学习群中可以找到的 ComfyUI 分层次(基础进阶)的学习案例: 基础课程:陈旭常用节点讲解和简单的节点制作、长风归庭基础教程+工作流创建、王蓉🍀 🎈 Wang Easy 基础搭建和转绘、唯有葵花向日晴基础教程,工作流开发,实际应用场景、苏小蕊基础教程、Sophy 基础课程、啊乐福基础课程、塵优秀案例、风信基础课程➕平面设计应用场景、北南基础课程、Damon 基础课程、雪娴_CC 基础课程(从安装开始)、Joey 实时转绘工作流、三思基础教程、晓珍、戴志伟基础课程、Moana 基础教程、Jl 基础教程、kk 基础教程、samuel 基础 进阶课程:ヘヘ阿甘采样器原理与优化、热辣 HuolarrAI 系统课私聊图生视频、咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点、傅小瑶 Lucky 如何制作多人转绘视频、云尚工作流节点搭建思路、FǎFá 热门节点功能,搭建、森林小羊基本报错解决方式及基础工作流逻辑分析、蜂老六装一百个最新常用插件后如何快速解决冲突问题、阿苏工作流框架设计、aflyrt comfyui 节点设计与开发、老宋&SD 深度解释虚拟环境部署和缺失模型的安装、Liguo 模型训练、郑个小目标针对于某个插件的深入讲解、波风若川报错解决、皮皮 Peter 工作流的设计规划和调优逻辑、Jāy Līn 锦鲤工作流搭建逻辑和原理、K 如何本地部署基础生图参数选择工作流的基本应用、Adai 基础课程、镜生视频、梦飞基础教程、🙋🙋🙋各个节点讲解和参数含义、Mr.大狐🏝报错解决、Duo 多吉~基础课程、渔舟基础课程+工作流搭建思路、乔木船长工作流、☘️基础教程、☘基础教程、工作流设计+典型案例剖析、麒白掌工作流搭建、OutSider 风格迁移、吴鹏基础+工作流搭建、拾光工作流基础搭建从入门到精通、茶浅浅。视频转绘/节点工作流介绍、百废待.新(早睡版)工作流从入门到进阶、电商应用场景、小马哥人物一致性分镜画面生成、C 张工作流搭建+电商落地应用、uui 视频风格迁移、你头发炸了基础教程搭建思路、阿头实战案例分享
2024-09-24
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了 AI 大模型的概念和原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-11-14
小白学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以通过以下方式加深对 AI 技术原理的理解: 1. 观看相关视频,了解如什么是 AI 大模型及其原理。 2. 学习相关技术名词和概念关系: 生成式 AI 生成的内容叫 AIGC。 机器学习包括监督学习、无监督学习、强化学习。 监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失。 深度学习参照人脑有神经网络和神经元。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。 3. 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出的 Transformer 模型。
2024-11-14
哪里可以学习AI
以下是为您提供的新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-14
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念:了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程:通读官方文档,研究开发团队和专家的教程与技巧分享。 3. 学习常见术语和范例:熟悉相关领域术语和概念,研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧:学会组合词条精确描述效果,掌握控制生成权重的符号技巧,处理抽象概念等无形事物的描述。 5. 实践和反馈:尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教获取反馈。 6. 创建提示词库:按主题、风格等维度建立,记录成功案例方便复用。 7. 持续跟进前沿:关注最新更新和社区分享,掌握新技术、新范式、新趋势。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,提供背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:与语言模型互动,根据输出提高提示词质量,尝试变体并分析差异。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。
2024-11-13