直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI在法律领域的最新应用

回答

以下是 AI 在法律领域的一些最新应用:

  1. 专利审查方面:AI 技术通过自动化和智能化手段,帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。
  2. 法律文书:这是目前 AI 在 2B 行业基本成熟的应用,其格式固定,核心技术是法条/判例的引用,是“搜索”能力和大模型能力的搭配。
  3. 虽然目前其他 2B 应用如“AI 客服”等雷声大、雨点小,未达到大量取代人工的预期,但生成式人工智能技术已逐步涵盖艺术创作产业、医疗保健、虚拟现实、数据合成与数据增强等多个领域,为各行业带来创新、效率与价值。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:有没有专利审查方面的AI ?

是的,近年来,人工智能(AI)在专利审查领域得到了广泛应用。AI技术通过自动化和智能化的手段,帮助专利审查员更高效地处理大量的专利申请、检索相关文献、评估专利性和创新性等任务。以下是一些具体的AI应用和平台,它们在专利审查过程中发挥了重要作用:

2024AIGC法律风险研究报告(更新版).pdf

飒姐团队希望2024年版报告能给各位读者更为详细地展现目前AIGC在国内外的盛况,也期待未来更加富有想象力和突破性的发展。您最坚实的后盾:肖飒法律团队2024年4月1日AIGC法律风险研究报告II2023年版序言我们往往忽略技术带来的长久改变,却往往重视其当下的变革。毫不夸张地说,AI将改变人们生活的方方面面,从衣食住行到思维工具,很多生产关系会由此改变,我们的伦理和法律将受到强有力地“拷问”。面对生产力的解放和生产关系的变化,法律的回应会是怎样的?作为一线服务科技领域的前沿法律服务团队,我们致力于协助更多技术咖成就伟大的变革,成为时代发展的弄潮儿。自2023年开年以来,生成式人工智能技术逐步迎风而起,其应用逐步涵盖艺术创作产业、医疗保健、虚拟现实、数据合成与数据增强等多个领域,为各行业带来了更多创新、效率与价值,甚至有学者将人工智能的发展称之为一次新的生产力革命。

AGI万字长文(上)| 2023回顾与反思

AI法律文书:这是目前AI在2B行业唯一基本成熟的应用。法律文书格式固定且核心技术是法条/判例的引用。这个应用其实是“搜索”能力和大模型能力的搭配。其他2B应用:基本是雷声大、雨点小。虽然现在是个公司都想和AI沾边,按实际上真正用起来的并不多;“浏览器里加个ChatGPT快捷方式”是大多数在问卷中回答到“工作中使用AI”的公司的主要做法。这其实也很正常,因为AI的2B能力还很掉链子:连最擅长的代码(如Github Copilot)也只是“实习生水平”;以及,问题还在于AI写代码的速度比人跟在后面Debug要快得多。另外一个看似伸手可及的应用是“AI客服”,但实习体验上也并没有达到可以大量取代人工客服的预期。我也尝试用OpenAI的API搭了个“写作助手”,但完全无法达到帮助写出现在这文章的能力。直接的感受差不多是在“指挥一群脱缰的野马”:控制困难、不能精细调整、没有记性、不讲逻辑是最痛的。当然,我自己花的时间也有限,也没有好好研究写Prompt/提示词的技巧。这个过程也我开始反思:现在的大模型究竟擅长的是什么?

其他人在问
学习ai有哪些方向可以选择
学习 AI 有以下几个方向可供选择: 1. 编程语言基础:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验:尝试使用如 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索面向特定群体的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 6. 特定模块深入:根据自身兴趣选择特定模块,如图像、音乐、视频等进行深入学习,掌握提示词技巧。 7. 与 AI 产品互动:使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 8. 结合特定领域:如将 AI 与宠物行业结合,包括 AI 宠物助手(自动识别宠物情绪、提供饮食建议、监测健康状况等)、AI 宠物互动玩具、AI 宠物图像生成、AI 宠物医疗诊断、AI 宠物行为分析等,需要掌握基础的 AI 技术,了解宠物相关领域知识,关注应用案例并尝试开发原型。
2024-11-08
什么是AI
AI 是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。它就像一个黑箱,我们不必深究其理解方式。其生态位是一种似人而非人的存在。 AI 技术在很多领域都有应用,比如: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等方面。 制造业:涉及预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(此处未给出具体应用内容) 在健身方面,AI 可以辅助或改善健身训练和健康管理,例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身产品。
2024-11-08
如何系统的学习ai相关知识,并达到完善输出的水准
以下是系统学习 AI 相关知识并达到完善输出水准的建议: 一、基础知识学习 1. 编程语言:从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 了解基本概念:熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。可以阅读相关的入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、学习资源与途径 1. 在线课程:在「」中,有一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity),按照自己的节奏学习,并争取获得证书。 2. 关注权威媒体和学者:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 三、实践与应用 1. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 3. 特定模块深入学习:根据自己的兴趣选择 AI 领域的特定模块(如图像、音乐、视频等)进行深入学习。 4. 掌握提示词技巧:提示词上手容易且很有用,要熟练掌握。 四、持续学习与分享 1. 持续学习:不断吸收新知识,更新自己的知识体系。 2. 分享交流:在知识库分享自己实践后的作品和经验,与他人交流学习。 总之,要全面系统地学习 AI 知识和技能,需要从多个方面入手,不断实践和探索。
2024-11-08
目前有哪些值得关注的AIGC短片
以下是一些值得关注的 AIGC 短片: AIGC Weekly 76 中: Luma AI 发布的 Dream Machine 视频生成模型,图生视频表现惊艳,如美少女混剪(https://x.com/KakuDrop/status/1800928377693687890)和可爱怪物动画(https://x.com/LumaLabsAI/status/1800921393321934915)。 用已有的表情包图片生成的视频也生动搞笑,如奥斯卡合影图片(https://x.com/fofrAI/status/1801198998289608925)。 作者自己跑的测试(https://x.com/op7418/status/1801138865224454480)总结了一些要点。 Luma 官方发布的视频(https://x.com/op7418/status/1801828221996122144)介绍了模型特点和擅长内容。 AIGC Weekly 95 中: 将视频拆分为各个层级的 Demo(https://x.com/dmvrg/status/1851480809477455899)。 Midjourney 的图片编辑加上 C4D 渲染的 Framer LOGO(https://x.com/andyorsow/status/1851771716852420632)。 两个同事计划午餐约会的短片(https://x.com/iamneubert/status/1851615112878076164)。 Nicolas 这段 AI 视频素材混剪(https://x.com/iamneubert/status/1851256571856052467)。 此外,浙江在线报道了 AI 春晚,如《10 万人观看的这场 AI 春晚,有何不同》(https://china.zjol.com.cn/pinglun/202402/t20240212_26647577.shtml)提到了 Way to AGI 社区组织的相关情况。
2024-11-08
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
Ai相关缩写及对应含义
以下是一些常见的 AI 相关缩写及对应含义: AI:Artificial Intelligence,人工智能,一种目标,让机器展现智慧。 GenAI:Generative AI,生成式人工智能,一种目标,让机器产生复杂有结构的内容。 LLMs:Large Language Models,大语言模型,是一类具有大量参数的“深度学习”模型。 AIGC:Artificial Intelligence Generated Content,人工智能生成内容,是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。 ANI:artificial narrow intelligence,弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 AGI:artificial general intelligence,通用人工智能,能做任何人类可以做的事。
2024-11-08
最新AI搜索相关产品总结
以下是关于最新 AI 搜索相关产品的总结: 自今年二月份以来,AI 搜索赛道不断有新的产品出现,市场定位有所差异。 在国内,有大模型厂商推出的 ChatBot 产品,如智谱清言、Kimi Chat、百小应、海螺 AI 等;也有搜索厂商或创业团队推出的 AI 搜索产品,如 360 AI 搜索、秘塔、博查 AI、Miku 等。 在海外,有很多成熟的和新出的泛 AI 搜索产品,如 Perplexity、You、Phind 等。中国公司和团队也有面向全球市场的出海产品,如 ThinkAny、GenSpark、Devv 等。 ThinkAny 选择出海做全球市场,主要考虑国内竞争激烈、用户付费意愿不高、存在政策风险等因素。 从解决的需求或面向的群体分类,可分为通用搜索和垂直搜索两类。通用搜索如 Perplexity、ThinkAny,没有明显的受众倾向,任何人可以搜任何问题,都能得到相对不错的搜索结果。垂直搜索如 Phind、Devv、Reportify,一般面向特定人群或特定领域,在某类问题的搜索上会有更好的结果。 AI 搜索目前主要有两类产品形态: 1. 大模型厂商或第三方推出的 ChatBot,主要交互是一个对话框+RAG 联网检索,这类产品包括 ChatGPT、Kimi Chat 等。 2. 专门做 AI 搜索的产品,主要交互是一个搜索框+搜索详情页,这类产品包括 Perplexity、秘塔等。 以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 5. Flowith:一款创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。 这些 AI 搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。但内容由 AI 大模型生成,请仔细甄别。
2024-11-07
最新AI资讯
以下是为您提供的最新 AI 资讯: 对于新手学习 AI,要持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 中的部分资讯: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: 2024 年人工智能现状: OpenAI 的 o1 模型占据主导地位:OpenAI 的 o1 在数学、科学和推理方面重新定义了 AI 的极限,让竞争对手感到困惑和挫败。 中国的 AI 崛起:中国模型不顾制裁,凭借强大的韧性和战略智慧在排行榜上名列前茅,证明了其主导地位。 生成式 AI 的数十亿美元繁荣:AI 初创公司大赚,但可持续性仍像能理解细微差别的聊天机器人一样难以捉摸。报告链接:
2024-11-06
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
最新的开源数字人项目
以下是一些最新的开源数字人项目: 1. 项目地址:https://github.com/wanh/awesomedigitalhumanlive2d ,选择了 live2d 作为数字人躯壳,其驱动方式相比 AI 生成式更可控和自然,相比虚幻引擎更轻量和简单,卡通二次元形象接受度更高。Live2D 的 SDK 驱动方式可参考官方示例:https://github.com/Live2D 。 2. 开源数字人组合方案: 第一步:先剪出音频,使用 https://elevenlabs.io/speechsynthesis 或使用 GPTsovits克隆声音,做出文案的音频。 第二步:使用 wav2lip 整合包,导入视频和音频,对口型得到视频。基础 wav2lip+高清修复整合包下载地址:https://github.com/Rudrabha/Wav2Lip 。产品:https://synclabs.so/ 。 3. 构建数字人灵魂:可借助开源社区的力量,如 dify、fastgpt 等成熟的高质量 AI 编排框架。在开源项目中使用了 dify 的框架,可利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,具体部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如有更高度定制的模型,也可在 Dify 中接入 XInference 等模型管理平台部署自己的模型。数字人 GUI 工程中保留了 LLM、ASR、TTS、Agent 等多个模块,便于扩展。
2024-11-01
AI 保险 最新新闻
以下是关于 AI 的最新新闻: OpenAI 新模型于 9 月 12 日发布,为匹配新模型的功能,加强了安全工作、内部治理和联邦政府合作,包括严格测试评估、红队工作和董事会级审查流程。还与美国和英国 AI 安全研究所正式达成协议,允许其提前获得研究版本,建立未来模型发布前后的研究、评估和测试流程。 拜登于 2023 年 10 月 30 日签署 AI 行政命令,要求最强大的 AI 系统开发者向美国政府分享安全测试结果等关键信息。国家标准与技术研究所将制定严格标准进行广泛红队测试,国土安全部将其应用于关键基础设施部门并成立 AI 安全与保障委员会。能源和国土安全部将应对 AI 系统对关键基础设施及相关风险。资助生命科学项目的机构将制定新标准防止利用 AI 制造危险生物材料。商务部将为检测 AI 生成内容和认证官方内容制定指导。联邦机构将使用相关工具让美国人能识别政府通信的真实性,并为私营部门和全球政府树立榜样。
2024-11-01
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
如何快速创建调用API的应用
以下是快速创建调用 API 应用的步骤: 1. 了解请求的组成部分: Body:用于传递请求主体,GET 方法中通常不使用。 Path:定义请求路径,GET 方法中可编码参数在其中。 Query:定义请求查询部分,是 GET 方法常用的参数传递方式。 Header:定义 HTTP 请求头信息,通常不用于传递参数。 2. 配置输出参数: 在配置输出参数界面,可自动解析或手动新增参数。 包括设置参数名称、描述、类型、是否必填等。 对于 Object 类型参数,可添加子项。 3. 调试与校验: 在调试与校验界面填写输入参数并运行。 查看输出结果,Request 为输入传参,Response 为返回值。 4. 发布:在插件详情页右上角点击发布。 以创建调用 themoviedb.org API 应用为例: 注册并申请 API KEY:前往 themoviedb.org 注册,依次点击右上角头像 账户设置 API 请求 API 密钥 click here,选择 Developer 开发者,填写相关信息并提交,获取 API 读访问令牌备用。 构建 GPT:新创建 GPT,设置名字和描述,添加 Instructions 内容,并添加 Webpilot Action 和粘贴相关 Schema 内容。
2024-11-08
如何提高RAG应用中的准确率
以下是一些提高 RAG 应用准确率的方法: 1. 基于结构化数据来 RAG: 避免数据向量化和语义搜索的问题,直接利用原始数据和 LLM 的交互,提高准确率。因为结构化数据的特征和属性明确,能用有限标签集描述,可用标准查询语言检索,不会出现信息损失或语义不匹配的情况。 减少 LLM 的幻觉可能性,LLM 只需根据用户问题提取核心信息和条件,并形成标准查询语句,无需理解整个文档语义。 提高效率,省去数据向量化和语义搜索过程,直接使用标准查询和原始数据进行回复,且结构化数据的存储和更新更易更省空间。 增加灵活性,适应不同数据源和查询需求,只要数据是结构化的,就可用此方法进行 RAG。 2. 参考行业最佳实践,如 OpenAI 的案例: 从较低的准确率开始,尝试多种方法,标记哪些被采用到生产中。 通过尝试不同大小块的信息和嵌入不同内容部分,提升准确率。 采用 Reranking 和对不同类别问题特别处理的方法进一步提升。 结合提示工程、查询扩展等方法,最终达到较高的准确率,同时强调模型精调和 RAG 结合使用的潜力。 3. 深入了解 RAG 的基础概念: RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-11-08
AI应用于企业
以下是关于 AI 应用于企业的相关内容: 提示词工程在企业中的应用: 提升决策、创新和沟通:通过个性化客户互动、情感智能沟通、内部知识管理和跨部门协作等方式优化客户服务和内部沟通。例如,使用特定提示词训练客服 AI 以提升客户服务质量。 AI 在各行业的主要应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 AI 在企业中的主要应用领域: 计算机视觉:如图像分类和物体识别、图像分割算法、视觉追踪等,应用于面部识别、检测 X 光照射图片等。 自然语言处理:包括文本分类、信息检索、名称实体识别、机械翻译、解析与语音部分标注技术、语音识别、触发词检测、语音 ID 识别、语音合成技术等。 机器人:涉及机器人“感知”、运动轨迹计划、控制等。
2024-11-08
能创建AI智能体的应用
以下是一些能创建 AI 智能体的应用: 1. 很多 AI 网站都可以创建“智能体”,您可以为其配置提示词、知识库、能力配置等,从而手搓各种机器人为您工作,例如出试题、找资料、画插图、专业翻译等。 2. 字节的扣子(Coze)是新一代一站式 AI Bot 开发平台,无论有无编程基础,都能在该平台迅速构建基于 AI 模型的各类问答 Bot,开发完成后还能将 Bot 发布到社交平台和通讯软件上进行交互聊天。创建智能体可通过简单 3 步:起名称、写简单介绍、用 AI 创建头像。 3. Menlo Ventures 投资组合中的公司如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前需大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。 生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)在这些类别中都是早期突破性的代表,其中心是 LLMs 的少样本推理能力。 AI 智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以 AI 智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的 AI 智能体来解决自己的事情。
2024-11-08
Claude提示词结构 如何应用
以下是关于 Claude 提示词结构及应用的相关内容: 标注提示词的不同部分:可以使用多种语法结构分隔文本与提示,分隔符既可以是复杂的 html 结构、纯文本,也可以自定义语言标记和格式,甚至 emoji 都可以成为分隔符。常用的语法结构有 Markdown、XML、HTML、JSON 等编程语言。 分解任务:这是做总结性输出或处理长文档时的有效方法,例如从原文中提取相关引文。 提示词链:分解并跨提示词使用。 使用 XML 标签:缺乏“结构”的提示词对 Claude 较难理解,而 XML 标签类似于“章节标题”,Claude 已针对其进行专门训练。
2024-11-08
提示词结构 如何应用
提示词结构在应用时遵循清晰的结构最为有效,可将场景、主题和相机运动的细节划分为单独部分。以下是一些常见的结构和示例: 简单公式: 复杂公式: 例如,无结构提示词为“小男孩喝咖啡”,有结构的提示词则是“摄影机平移(镜头移动),一个小男孩坐在公园的长椅上(主体描述),手里拿着一杯热气腾腾的咖啡(主体动作)。他穿着一件蓝色的衬衫,看起来很愉快(主体细节描述),背景是绿树成荫的公园,阳光透过树叶洒在男孩身上(所处环境描述)”。在提示的不同部分重复或强调关键思想可以帮助提高输出的一致性。使用这种结构,提示一个女人站在热带雨林可能是“”。在超高速拍摄中,相机会快速飞过场景,应尝试将提示集中在场景中应该出现的内容上,比如输入晴朗的天空,而不是没有云的天空。
2024-11-08
学习法律如何使用AI来提高学习效率
以下是关于学习法律如何使用 AI 来提高学习效率的方法和建议: 1. 数据分析处理:将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,便于发现和修正问题。 2. 提问方式:针对复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化或深化。 3. 提供学习内容:给 AI 提供大量数据和示例,包括高质量的参考材料、操作指南、行业最佳实践、案例研究等,同时编写详细流程和知识。 4. 利用专业术语引导:在 Prompt 中使用法律术语引导 AI 回答方向。 5. 总结与组织:在提供法律建议时,用简洁明了的语言总结核心观点和注意事项,使用引号、分隔符号及连接词组织 Prompt。 6. 设定角色和能力:赋予 AI 专注于民商事法律领域、擅长案例研究等角色,提升工作效率。 7. Prompt 方法总结:格式为【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】 8. Prompt 技巧:讲清楚背景和目的,学会提出好问题,拆解工作流程,切分环节,具体落实到工作细节。 需要注意的是,以上内容仅供参考,在实际应用中请结合自身情况进行调整和实践。
2024-10-27
法律行业搜索案例的免费ai哪个好用
在法律行业,进行案例搜索时最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在查不出来、数据不全或生成内容不满足需求的情况。以下是一些案例检索的 Prompt 指令词示例及相关场景: 场景一:案例检索 Prompt 指令词:请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 预计效果:AI 系统将检索相关数据库,找出符合要求的判例,并提炼出这些案例中有关“混淆可能性”标准的关键判决理由和结果,形成摘要报告。 其他例子: Prompt 指令词:检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 Prompt 指令词:比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 Prompt 指令词:研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。 Prompt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】 场景二:类案检索 Prompt 指令词:(与场景一类似) 预计效果:(与场景一类似) 其他例子:(与场景一类似) Prompt 结构提示:(与场景一类似) 场景四:法规研究与解读 Prompt 指令词:根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议。 预计效果:AI 助手将依据《数据安全法》的最新条款,解析企业处理个人信息所必须遵循的原则,并结合实践情况提出详细的操作指南或合规建议。 其他例子: Prompt 指令词:分析新出台的《网络安全法》对电子商务平台的具体影响,特别是数据保护和用户隐私方面的规定,为客户提供合规操作指南。 Prompt 指令词:【输入一段具体法律规定如:国际贸易规定】,以上是国际贸易法规的最新变化,为客户提供跨境交易的合规指南,特别是关税和进出口限制方面的内容。 Prompt 指令词:解读新修订的税法对中小企业的影响,提供税务规划和避税策略的建议,确保客户在合法范围内优化税务负担。 Prompt 结构提示:【需求 or 目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】 场景五:法律意见书撰写或非诉交易文件材料 Prompt 指令词:针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性。 预计效果:AI 将基于商标法的相关条款和案例法,提供关于商标侵权案件的诉讼策略。这将包括对原告商标权利的详细分析、被告侵权行为的法律评估、关键证据的搜集建议、可能的法律抗辩点以及在适当情况下和解或调解的策略。AI 的目标是帮助律师构建一个全面的诉讼计划,以提高胜诉几率并为客户争取最大利益。 其他例子: Prompt 指令词:为一起涉及专利侵权的案件制定诉讼策略,分析专利的有效性、被告的侵权行为以及可能的抗辩理由,提出如何证明侵权和计算损害赔偿的建议。 Prompt 指令词:针对一起劳动合同纠纷案件,分析员工的权益和雇主的责任,提出诉讼策略,包括主张的权益、证据收集的重点以及如何证明雇主的违约行为。 Prompt 指令词:在一场涉及知识产权许可的诉讼中,分析许可协议的条款和双方的权利义务,提出诉讼策略,包括如何证明许可协议的违反、计算损失赔偿以及可能的合同解除条件。 其他可以尝试的场景:模拟法庭 Prompt 指令词:模拟一场涉及商业合同违约的法庭审理,分析原告主张的违约责任和被告提出的免责抗辩,预测法庭可能的判决,并提出如何优化法庭陈述和证据呈现的建议。 预计效果:AI 将根据商业合同法的相关规定和案例法,模拟法庭审理过程。AI 将提供对原告和被告双方可能的论点、证据和法律依据的分析,预测法庭可能的判决结果,并给出如何更有效地在法庭上进行陈述、展示证据和进行交叉审问的建议。这将帮助律师准备更有说服力的法庭策略,以期达到最佳的诉讼结果。 其他例子:(与上述类似)
2024-10-10
“AI治理与法律”的维度
以下是关于“AI 治理与法律”维度的相关内容: 在全球范围内,对于 AI 的立法、监管、伦理讨论大范围落后于技术发展。 美国方面,对于中国的硬件科技限制进一步升级。最先进的 AGI 世界模型不开源,开源模型会落后闭源一个代际,但会服务更广泛的各种专业应用。AGI 将对全行业科技发展起到推动作用,有更好 AGI 的国家会有更快的全面技术进步。 欧洲是目前唯一对 AI 治理有一定讨论的地区,但也大多停留在纸面。 英国的情况是,AI 可能增加不公平偏见或歧视的风险,可能会削弱公众对 AI 的信任。产品安全法确保在英国制造和投放市场的商品是安全的,特定产品的立法可能适用于一些包含集成 AI 的产品,但 AI 技术的特定安全风险应密切监测。消费者权利法可能在消费者签订基于 AI 的产品和服务销售合同时提供保护。 欧盟方面,自 1956 年“人工智能”概念提出后,其理论范围和技术方法不断扩展。2021 年《AI 法案》提案对人工智能的定义更宽泛,而 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。 我国相关法规讨论的出发点完全在于“对于舆论的影响”,根本没有触及 AGI 本身的伦理问题,决策路径大概是政治>经济>>AI 伦理。
2024-10-01
关于人工智能理论与法律给我做一个ppt
以下是为您生成的关于人工智能理论与法律的 PPT 大纲: 幻灯片 1:标题页 报告:人工智能理论与法律 幻灯片 2:介绍 简述人工智能的发展现状 引出人工智能理论与法律的主题 幻灯片 3:编程和数学能力 强调其作为理性思考和抽象思维能力的象征 提及 GPT4 在编程和数学领域的能力 幻灯片 4:GPT4 在专业领域的表现 展示 GPT4 在医学和法律领域的初步测试结果 美国医学执照考试准确率约 80% 多州律师考试准确率高于 70% 幻灯片 5:最新一代 LLM 在法律方面的表现 指出如 Google 的 PaLM、GPT3.5 已展现出人类水平能力 幻灯片 6:研究方法的差异 解释本研究与其他相关工作在方法上的不同 您可以根据以上大纲内容进行 PPT 的制作,进一步丰富每个幻灯片的具体内容和配图,以达到更好的展示效果。
2024-09-29
法律垂类AI APP
在法律领域,当优先考虑的风险处于法律空白地带时,监管机构需要与政府合作以确定潜在行动。例如,在法律服务部门,只有六种特定的法律服务活动受到监管机构的监督,这些“保留法律服务活动”在 2007 年《法律服务法》(HM Government)中有明确规定,且只能由获得授权(或豁免)的人员进行。AI 驱动的系统可能会提供诸如撰写遗嘱或合同等其他服务(许多人可能认为这属于法律服务),但却不受法律服务监管机构的监督。对于 AI 监管,应采取创新的方法,例如调整监管机构的职权范围、更新监管机构的法规,或者进行额外的立法干预。我们的方法得益于强大的主权议会制度,能够可靠地针对新兴问题引入有针对性和适度的措施,包括在必要时调整现有立法。
2024-09-23
法律类AI 法务纠纷
以下是关于法律类 AI 在法务纠纷中的应用和指导: 在处理法务纠纷时,可直接明确期望 AI 完成的任务,例如在合同纠纷案件中,要求 AI 总结案件中双方的诉求、检索法条、预测可能的判决结果。还可以指定 AI 的回答风格,如模仿某位资深律师的逻辑严谨和言简意赅的风格。同时,可要求 AI 为您提供多个例子,如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 具体场景如劳动合同纠纷案件,可分析员工的权益和雇主的责任,提出诉讼策略,包括主张的权益、证据收集的重点以及如何证明雇主的违约行为。 在涉及知识产权许可的诉讼中,分析许可协议的条款和双方的权利义务,提出诉讼策略,包括如何证明许可协议的违反、计算损失赔偿以及可能的合同解除条件。 还可以进行模拟法庭,如模拟一场涉及商业合同违约的法庭审理,分析原告主张的违约责任和被告提出的免责抗辩,预测法庭可能的判决,并提出如何优化法庭陈述和证据呈现的建议。 对于输入的具体法律规定,如国际贸易法规的最新变化,可为客户提供跨境交易的合规指南,特别是关税和进出口限制方面的内容。解读新修订的税法对中小企业的影响,提供税务规划和避税策略的建议,确保客户在合法范围内优化税务负担。 在法律意见书撰写或非诉交易文件材料方面,针对版权纠纷案等,输入已有的证据材料和相关法律条文,让 AI 撰写初步法律意见书,论证主张的合理性和胜诉的可能性。
2024-09-23