Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何提高RAG应用中的准确率

Answer

以下是一些提高 RAG 应用准确率的方法:

  1. 基于结构化数据来 RAG:
    • 避免数据向量化和语义搜索的问题,直接利用原始数据和 LLM 的交互,提高准确率。因为结构化数据的特征和属性明确,能用有限标签集描述,可用标准查询语言检索,不会出现信息损失或语义不匹配的情况。
    • 减少 LLM 的幻觉可能性,LLM 只需根据用户问题提取核心信息和条件,并形成标准查询语句,无需理解整个文档语义。
    • 提高效率,省去数据向量化和语义搜索过程,直接使用标准查询和原始数据进行回复,且结构化数据的存储和更新更易更省空间。
    • 增加灵活性,适应不同数据源和查询需求,只要数据是结构化的,就可用此方法进行 RAG。
  2. 参考行业最佳实践,如 OpenAI 的案例:
    • 从较低的准确率开始,尝试多种方法,标记哪些被采用到生产中。
    • 通过尝试不同大小块的信息和嵌入不同内容部分,提升准确率。
    • 采用 Reranking 和对不同类别问题特别处理的方法进一步提升。
    • 结合提示工程、查询扩展等方法,最终达到较高的准确率,同时强调模型精调和 RAG 结合使用的潜力。
  3. 深入了解 RAG 的基础概念:
    • RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain应用开发指南-不用向量也可以RAG

「准确」。基于结构化数据RAG避免了数据向量化和语义搜索的问题,直接利用原始数据和LLM的交互,提高了RAG的准确率。因为结构化数据的特征和属性都是明确的,可以用有限的标签集进行描述,可以用标准的查询语言进行检索,因此不会出现信息损失或语义不匹配的情况。而且,LLM只需要根据用户的问题,提取出核心的信息和条件,并形成标准的查询语句,而不需要理解整个文档的语义,因此也减少了LLM的幻觉的可能性。「高效」。基于结构化数据RAG提高了RAG的效率,因为它省去了数据向量化和语义搜索的过程,直接使用标准查询和原始数据进行回复。数据向量化和语义搜索的过程是非常耗时和资源密集的,因为它们需要对海量的文本数据进行处理和计算,而且还需要存储和更新大量的向量数据。而结构化数据RAG只需要对结构化数据进行标准查询,这是一个非常快速和简单的过程,而且结构化数据的存储和更新也比向量数据更容易和更节省空间。「灵活」。基于结构化数据RAG提高了RAG的灵活性,因为它可以适应不同的数据源和查询需求,只要数据是结构化的,就可以用这种方法进行RAG。结构化数据是一种非常通用和广泛的数据格式,它可以表示各种各样的信息和知识,例如表格、数据库、XML等。而且,结构化数据的查询语言也是非常标准和通用的,例如SQL、SPARQL等。因此,结构化数据RAG的方法可以应用于不同的领域和场景,只要将用户的问题转化为相应的查询语言,就可以实现RAG。

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

上面的章节提到了了很多论文,论文的特点决定了他们的方法更多的是从细节出发,解决具体的细节问题。而RAG是更是一个在工业领域大放异彩的技术,下面我们将从RAG Flow的角度介绍几个行业最佳的RAG实践,看看在真实应用场景下应该如何构建RAG Flow。[heading3]1、OpenAI[content]从OpenAI Demo day的演讲整理所得,并不能完全代表OpenAI的实际操作。在提升RAG的成功案例中,OpenAI团队从45%的准确率开始,尝试了多种方法并标记哪些方法最终被采用到生产中。他们尝试了假设性文档嵌入(HyDE)和精调嵌入等方法,但效果并不理想。通过尝试不同大小块的信息和嵌入不同的内容部分,他们将准确率提升到65%。通过Reranking和对不同类别问题特别处理的方法,他们进一步提升到85%的准确率。最终,通过提示工程、查询扩展和其他方法的结合,他们达到了98%的准确率。团队强调了模型精调和RAG结合使用时的强大潜力,尤其是在没有使用复杂技术的情况下,仅通过简单的模型精调和提示工程就接近了行业领先水平。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

Others are asking
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控以及受幻觉问题干扰的情况。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 的优点包括: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据更新敏捷,增删改查可解释,对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,降低大模型输出出错的可能。 4. 便于管控用户隐私数据,且可控、稳定、准确。 5. 可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt 中,提交给大模型,让大模型的回答充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。RAG 由检索器和生成器两部分组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
2025-01-29
RAG与agent
RAG(RetrievalAugmented Generation,检索增强生成)是一种方法,例如在餐饮生活助手的应用中,它能根据用户需求从大规模餐饮数据集中检索出最合适的餐厅并提供相关信息和服务。实现餐饮生活助手的 RAG 实战,需要将餐饮数据集转化为 LangChain 可识别和操作的数据源,并定义 LLM 的代理,让其根据用户问题提取核心信息和条件,形成标准查询语句检索数据源并生成答案。 Agent 是大模型的一个重要概念,被认为是大模型未来的主要发展方向。它可以通过为 LLM 增加工具、记忆、行动、规划等能力来实现。目前行业里主要使用 LangChain 框架将 LLM 与工具串接。例如在 RAG 基础上,Agent 给大模型提供了更多工具,如长期记忆(数据库工具),还在 prompt 层和工具层完成规划和行动等逻辑设计。 在大模型请求中,最大的两个变量是 Messages 和 Tools,两者组合形成整个 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。RAG 可以是向量相似性检索,放在 system prompt 里或通过 tools 触发检索。Action 触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是通过更换 system prompt 和 tools 实现。
2025-01-28
RAG技术是什么
RAG 即检索增强生成(RetrievalAugmented Generation),是一种结合了检索模型和生成模型的技术。 其核心目的是通过某种途径把知识告诉给 AI 大模型,让大模型“知道”我们的私有知识,变得越来越“懂”我们。 在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 一个 RAG 的应用通常包含以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 的最常见应用场景是知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 LangChain 是一个用于构建高级语言模型应用程序的框架,它与 RAG 的关系为: 1. LangChain 作为框架,提供了实现 RAG 所必需的工具和组件。 2. RAG 作为技术,可以在 LangChain 框架内得以实施和利用。 3. LangChain 允许开发者通过其模块化组件来构建 RAG 应用程序。 4. LangChain 通过提供现成的链和提示模板,简化了 RAG 应用程序的开发过程。 5. 利用 LangChain 实现 RAG 可以帮助开发者创建更高效、更准确的应用程序,特别是在需要大量外部信息来辅助决策的场景中。 6. LangChain 通过其丰富的 API 和组件库,支持开发者构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。
2025-01-28
怎么做chatbot特定角色的专业知识rag优化?
以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法: 1. 复制预置的 Bot: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 可以在新打开的配置页面修改复制的 Bot 配置。 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。 2. 集成 Workflow 到 Bot 里: 选择 GPT4作为聊天模型。 添加实用的插件,丰富 Bot 的能力。 设计人设和提示词,例如: Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't. Your Capabilities search_and_answer Your most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks\"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?\",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes. How to Interact with the User
2025-01-26
RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控以及受幻觉问题干扰的情况。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 的优点包括: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt 中,提交给大模型,此时大模型的回答会充分考虑到“包含答案的内容”。其最常见应用场景为知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 RAG 由一个“检索器”和一个“生成器”组成,检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案,非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。
2025-01-25
rag的召回策略
RAG(检索增强生成)的召回策略主要包括以下方面: 1. 检索是 RAG 框架的核心组件之一,其质量和效率对系统性能至关重要。 检索策略:需确定何时进行检索及如何选择要检索的信息,可根据任务和上下文调整。 检索粒度:能以不同粒度进行,选择取决于任务要求和数据结构。 检索方法:包括基于关键字、实体检索、自然语言查询和知识图检索等,各有适用情境和优势。 检索效率:在实时应用中,优化检索过程以降低延迟和资源消耗是重要任务。 外部数据源:可从多种外部数据源检索,选择合适的数据源对获取准确丰富信息很关键。 2. 随着 RAG 的发展,出现了自适应的检索(也称作主动检索),其与 LLM Agent 核心思想相似。 RAG 系统可主动判断检索时机和结束流程,输出最终结果。 根据判断依据,可分为 Promptbase 和 Tuningbase 两种方式。 Promptbase 方式通过 Prompt Engineering 让 LLM 控制流程,如 FLARE 案例。 Tuningbase 方式对 LLM 微调使其生成特殊 token 来触发检索或生成,如 SelfRAG 案例。 3. 在 RAG 系统开发中,为解决文档整合限制等问题,可采取以下措施: 调整检索策略:LlamaIndex 提供多种从基础到高级的检索策略,如基础检索、高级检索与搜索、自动检索、知识图谱检索、组合/层级检索等,以适应不同需求和场景,提高检索精确度和有效性。 微调嵌入技术:对开源嵌入模型进行微调是提高检索准确度的有效手段,LlamaIndex 提供了详细的微调指南和示例代码片段。
2025-01-23
文生图如何提高字在图中的准确率
要提高文生图中字在图中的准确率,可以从以下几个方面入手: 1. 数据准备: 对于中文文字的生成,Kolors从两个方面准备数据。一是选择 50000 个最常用的汉字,机造生成了一个千万级的中文文字图文对数据集,但机造数据真实性不足。二是使用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,大概有百万量级。 Hugging 和英特尔发布了提高文生图模型空间一致性的方案,包括一个详细标注了空间关系的 600 万张图片的数据集,模型和数据集都会开源。 2. 模型能力: DALLE 3 和 SD3 已经有了很强的英文文字生成能力,但目前还未有模型具有中文文字的生成能力。中文文字的生成存在困难,一是中文汉字的集合大且纹理结构复杂,二是缺少中文文字的图文对数据。 作者观察到,使用机造数据结合高质量真实数据后,中文文字生成能力的真实性大大提升,而且即使是真实数据中不存在的汉字的真实性也得到了提升。 3. 训练方法: 在包含大量物体的图像上进行训练,可以显著提高图像的空间一致性。 此外,在写文生图的提示词时,通常的描述逻辑是这样的:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。对于新手而言,还有一些功能型辅助网站来帮我们书写提示词,比如:http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ 。还可以去 C 站(https://civitai.com/)里面抄作业。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会截然不同。
2025-01-29
目前语音转文字的AI工具有哪些,准确率怎样
目前常见的语音转文字的 AI 工具有以下几种: 1. GVoice:中文识别率优秀,少量错误可被 ChatGPT 正常理解和纠错,衔接流畅。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频进行精准识别,能翻译并生成双语字幕,声称处理了 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台及 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 6. Ava:为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 7. Verbit:专业的基于 AI 的转录和字幕。 8. Otter:混合团队高效协作会议所需的工具。 9. Trint:音频转录软件,从语音到文本到魔法。 10. Rev:99%准确的字幕、转录和字幕服务。 11. Voiceitt:为语音不标准的人群提供的应用程序。 12. Deepgram.com:通过 AI 语音识别实现更快速、更准确的语音应用。 13. Fireflies.ai:会议的 AI 助手。 14. SoapBox:让孩子们的声音被听见的语音技术。 15. Amberscript:使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 16. Speaksee:实时字幕记录面对面小组会议中的发言内容。 17. Speechmatics:理解每个声音的自主语音识别技术。 18. Sonix:支持 35 多种语言的自动转录。 需要注意的是,不同工具在不同场景和语言环境下的准确率可能会有所差异,您可以根据自己的具体需求选择适合的工具。
2024-09-23
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
我需要能辅助我做股票研究的AI应用
以下是一些可能辅助您做股票研究的 AI 应用: 1. 东方财富网投资分析工具:利用 AI 技术分析金融市场数据,为投资者提供投资建议和决策支持。例如根据股票的历史走势和市场趋势,预测股票的未来走势。 2. 博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》:在某种程度上实现了多 Agent 协作的能力。 目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少。一方面高度智能化的 Agent 能力需要打磨,概念落地还有距离;另一方面 AI 和娱乐消费诉求的结合几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2025-01-25
目前在TO C场景中,AI在哪前三个场景中应用最为广泛
在 To C 场景中,AI 应用较为广泛的前三个场景包括: 1. 角色扮演类产品:如“猫箱”“剧本戏”“名人朋友圈”等,在 LLM 基础上通过添加特定角色定义实现。 2. 陪伴类产品:以“星野”“Talkie”“BubblePal”等为代表,在 LLM 基础上对长短记忆进行处理,突出陪伴意义,随着时间积累知识库,使 AI 更懂用户。 3. 搜索工具类产品:像“秘塔”“360 搜索”等,本质上是 RAG 方案,部分产品会对搜索内容结构化,形成图谱或脑图。
2025-01-25
AI在国际贸易上的应用
以下是 AI 在国际贸易上的一些应用相关资料: 世界经济论坛发布的白皮书《生成式 AI 与国际贸易分析》探讨了 AI 对国际贸易的影响。 美国国际开发署(USAID)的《AI 在全球发展中的 PLAYBOOK》。 此外,英国在 AI 监管方面的国际策略包括: 继续推行包容的、多利益相关方的方法,例如支持其他国家实施支持包容性、负责任和可持续人工智能的法规和技术标准。 确保有效的国际技术标准在更广泛的监管生态系统中发挥作用,以支持跨境贸易,减少贸易技术壁垒,增加市场准入。 在多边合作中,利用各论坛的优势、专业知识和成员资格,确保为全球 AI 治理讨论增加最大价值,并与民主价值观和经济优先事项相关。 同时,英国的 AI 监管框架强调协作、适度和适应性,以与国际方法充分对齐,最大化市场准入和商业机会,且形成反馈循环的重要部分,理解该制度的运行情况及如何迭代。
2025-01-25
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
ai在营销方面的应用
以下是 AI 在营销方面的应用: 1. 营销 AI 产品: Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。 2. 生成式人工智能在营销中的改变: DALLE 2 和其他图像生成工具已用于广告,如亨氏使用番茄酱瓶的图像论证“这就是人工智能眼中‘番茄酱’的样子”,雀巢使用维米尔画作的人工智能增强版销售酸奶品牌,Stitch Fix 服装公司使用 DALLE 2 根据客户偏好创建服装可视化,美泰使用该技术生成用于玩具设计和营销的图像。 3. 2025 年数字营销趋势中的 AI 驱动营销: AI 将继续成为未来数字营销的基石,但使用需要具备战略性和明确目的,以确保品牌真实性,应追求提升用户体验。 预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元。采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
如何快速提高向AI工具的提问能力
以下是一些快速提高向 AI 工具提问能力的方法: 1. 先了解 AI 工具的功能和适用范围,明确其能解决的问题类型。 2. 学习相关的基础知识,例如 AIGC 背后的原理,以便更深入理解 AI 的可能性和局限性。 3. 避免拟人化的提问方式,而是直接清晰地描述问题。 4. 对于复杂的问题,逐步分解,分步骤进行提问。 5. 学会批判性地看待 AI 的输出结果,如有错误,分析原因并进一步优化提问。 6. 多参考他人成功的提问案例,如学生在春游前提问关于便携食物的规划。 7. 利用群里的交流氛围,如“公开问”,学习他人的提问技巧。 8. 对于不熟悉的领域,先进行一定的知识储备,再向 AI 提问。 9. 不断练习和尝试,在实践中总结经验,提高提问的准确性和有效性。
2025-01-28
怎么用AI提高团队工作效率,贸易类
以下是一些利用 AI 提高贸易类团队工作效率的方法: 1. 利用 AI“词生卡”技术:将抽象的文字描述转化为直观的逻辑图表和流程图,帮助团队更好地理解和执行复杂任务。团队成员可以通过“词生卡”方式自定义活动海报、商务名片、简历,也可以用于日报、月报等介绍工作进度,实现文图双输出,提高信息传导效率,并为创新思维提供新工具。 2. 参考哈佛商学院的研究:在工作中使用 AI 可以带来工作效率的显著改善。使用 AI 的被测试者比未使用者平均多完成 12.2%的任务,完成速度提高 25.1%,结果质量提高 40%。同时要注意,类似 GPT4 这样的模型有能力边界,过于依赖可能适得其反。能力较弱的被测试者提升较大,高级人才和低级人才的差距会被拉平。 3. 采用合适的协作方式:如“半人马”模式,强调人与 AI 紧密结合但各司其职,人类主导流程,根据任务性质调配资源;“机械人”模式,人与 AI 高度融合,在细节上循环迭代优化,最终实现人机一体化。 总之,合理利用 AI 技术和选择合适的协作方式,能够有效提高贸易类团队的工作效率。
2025-01-23
如何学习使用AI,提高工作效率,以及提高自身全方面能力
以下是关于如何学习使用 AI 来提高工作效率和自身全面能力的建议: 1. 工作方面: 让自己变成“懒人”,能动嘴的不要动手,用嘴说出想做的事。 能动手的尽量用 AI 替代,例如将工作单元切割开,建设属于自己的智能体,并根据结果反馈不断调整。 定期审视工作流程,看哪个部分可以更多地用上 AI,将所学应用于实践,不断优化工作流程。 2. 技术层面: 学习搭建专业的知识库、构建系统的知识体系,不仅用于工作,还可支持个人爱好和创作。 3. 个人素质方面: 提升学习能力,通过持续阅读和实践来吸收、消化和积累知识,培养好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 提升创造能力,这是在时代保持竞争力的关键。 善用工具,使用 AI 工具自动化重复性任务,适应时代转变,腾出时间进行更高层次思考。 具备抽象与整合能力,在更高层次上学习,为 AI 提供方向并作出合适选择。 4. 编程和研究方面: 参考技术大佬 Nicholas Carlini 的博文「How I Use "AI"」,学习其使用 LLM 进行编程和研究的实例分享。 用 GPT4 构建完整的 Web 应用。 通过与模型的互动式对话学习新技术,如 Docker、Flexbox 和 React 等。 借助 AI 快速获取新项目或新论文所需的样板代码。 用 AI 简化复杂的大型代码库。 将单调且简单的任务交给 AI,如数据格式化等。 在 AI 帮助下提升用户专业度和效率。 通过 AI 获取特定工具或命令的使用信息。 利用 AI 进行搜索,其效果比传统搜索引擎好。 用 AI 解决一次性任务和常见任务,修复常见错误。
2025-01-16
普通人如何学习利用ai,提高工作学习效率,怎么学习及学习顺序是怎样的
以下是为普通人提供的学习利用 AI 以提高工作学习效率的方法及学习顺序: 一、了解 AI 基本概念 首先,建议阅读相关资料,如「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么、其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入,比如一定要掌握提示词的技巧,其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,在知识库中也有很多大家实践后的作品和文章分享,欢迎自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。通过对话获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的学习模式,即输入→模仿→自发创造。同时注意,学习资源大多是免费开源的,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习时间可根据自身情况灵活安排,不必有压力,能学多少算多少。
2025-01-12
怎样提高ai识别题库准确性
要提高 AI 识别题库的准确性,可以从以下几个方面入手: 1. 检索原理方面: 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 2. 知识库方面: 知识库中的文档需要转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 完成。 知识库检索:根据问题向量,检索器在庞大的向量空间中搜索相关内容,通过相似性计算(如余弦相似性)找出与问题最接近的文档,再根据相似性得分排序并选择得分最高的几个文档,从中抽取具体的信息片段或答案。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成全新的上下文环境,为生成回答提供基础。 RAG(RetrievalAugmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,由检索器和生成器组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确和连贯的答案,适合处理需要广泛知识的任务,如问答系统。
2025-01-10