直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

学习ai有哪些方向可以选择

回答

学习 AI 有以下几个方向可供选择:

  1. 编程语言基础:可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。
  2. 工具和平台体验:尝试使用如 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索面向特定群体的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 基础知识学习:
    • 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。
  6. 特定模块深入:根据自身兴趣选择特定模块,如图像、音乐、视频等进行深入学习,掌握提示词技巧。
  7. 与 AI 产品互动:使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。
  8. 结合特定领域:如将 AI 与宠物行业结合,包括 AI 宠物助手(自动识别宠物情绪、提供饮食建议、监测健康状况等)、AI 宠物互动玩具、AI 宠物图像生成、AI 宠物医疗诊断、AI 宠物行为分析等,需要掌握基础的 AI 技术,了解宠物相关领域知识,关注应用案例并尝试开发原型。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:AI 怎么和宠物结合?

我总结了以下关于AI+宠物赛道的一些例子和学习路径:1.AI宠物助手-基于自然语言处理和计算机视觉的AI宠物助手,可以帮助主人更好地照顾宠物-例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等2.AI宠物互动玩具-利用AI技术开发的智能互动玩具,可以增强宠物的娱乐体验-例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等3.AI宠物图像生成-使用生成式AI模型,可以根据文字描述生成各种宠物形象的图像-这可以帮助宠物主人定制个性化的宠物形象4.AI宠物医疗诊断-利用计算机视觉和机器学习技术,可以开发AI辅助的宠物医疗诊断系统-通过分析宠物的症状图像和病历数据,提供初步诊断建议5.AI宠物行为分析-基于传感器数据和计算机视觉,可以利用AI技术分析宠物的行为模式-帮助主人更好地了解宠物的需求和习性学习路径建议:1.掌握基础的机器学习、计算机视觉、自然语言处理等AI技术2.了解宠物行为学、宠物医疗等相关领域知识3.关注业内先进的AI+宠物应用案例,学习其技术实现4.尝试开发简单的AI宠物应用原型,并不断迭代优化总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合AI技术和宠物行业需求,可以开发出各种有趣有用的应用。内容由AI大模型生成,请仔细甄别

其他人在问
普通人如何了解AI
普通人了解 AI 可以从以下几个方面入手: 1. 认识 AI 的本质:把 AI 当成一个黑箱,只需知道它是能理解自然语言并输出自然语言、模仿人类思维的东西,其生态位是似人而非人的存在。当使用时,要基于其“非人”的特点,通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识。 2. 利用万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,根据给出的知识框架,针对每个小点进一步询问,让 AI 帮助深度思考。 3. 寻找优质信息源:比如即刻 App 的“”等免费圈子,Twitter 和相关官网也是溯源的可选之处。若担心信息洪流,可采用只掌握最好产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知再谈技巧等做减法的小 tips。 4. 了解基本概念:阅读「」熟悉术语和基础概念,包括人工智能的定义、主要分支及联系,浏览入门文章了解其历史、应用和发展趋势。 5. 开始学习之旅:在「」找到为初学者设计的课程,通过在线教育平台按自己节奏学习,推荐李宏毅老师的课程。 6. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,并掌握提示词技巧。 7. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品并分享作品。 8. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。
2024-11-25
如何利用AI炒股
利用 AI 炒股可以通过以下几种方式: 1. Stocked AI:这是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 2. 博主林亦 LYI 的实践:在某种程度上实现了多 Agent 协作的能力来炒股。 需要注意的是,AI 在炒股中的应用仍存在一定的风险和不确定性,不能完全依赖其结果进行投资决策。在使用 AI 辅助炒股时,还需要结合自身的投资知识、经验和风险承受能力进行综合判断。
2024-11-25
ai和Chatgpt的区别
AI 和 ChatGPT 存在以下区别: 1. 侧重点不同:Character.ai 更注重人格属性,试图满足社交、情感、陪伴等需求;而 ChatGPT 注重提高效率和解放生产力。 2. 定义和性质: Gen AI/Generative AI 是“生成式人工智能”的正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 从 OpenAI 的官网来看,在 2022 年宣发时被称为一种模型,在帮助页面中又被称为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。其中,AGI 是通用人工智能,能够像人类一样思考、学习和执行多种任务的人工智能系统;NLP 是自然语言处理,即处理人类语言;LLM 是大型语言模型,数据规模很大,耗费资金多。
2024-11-25
关于ai的书籍推荐
以下是为您推荐的关于 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga; Richard B. Lvry; George R. Mangun):世界权威的认知神经科学教材,是认知神经科学之父的经典力作,系统涵盖了认知神经科学的诸多方面。 《神经科学原理》(作者:Eric R. Kandel; James H. Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 Python 和 AI 相关: Python 方面:《Python 学习手册》《Python 编程》。 AI 方面:《人类简史》《深度学习实战》。 希望这些推荐能满足您的需求。
2024-11-25
什么是AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI ,可以将其视为某种模仿人类思维、能够理解自然语言并输出自然语言的东西,就像一个黑箱,我们不必深究它如何理解,其生态位是一种似人而非人的存在。 最初,计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,我们无法明确编程步骤,而这正是 AI 所感兴趣的。 在实际应用中,AI Review 是一项可查看代码库中最近更改以捕获潜在错误的功能,您还能提供自定义说明让其专注于特定方面,比如性能问题。目前有查看工作状态、查看与主分支的差异、查看上次提交等审核选项。
2024-11-25
哪个AI编程工具比较好?
以下是一些比较好的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研基础大模型微调。 7. Codeium:由 AI 驱动,通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 此外,Cursor 也是一款优秀的 AI 编程工具,它是专为人工智能辅助编程设计的现代化集成开发环境(IDE),具有 AI 辅助编码、代码自动补全、实时代码分析等多种特点,支持多语言、集成终端、Git 集成、自定义主题、跨平台和实时协作,能通过 AI 技术提高开发者生产力,使编码更智能高效。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 Cursor 的下载地址:第一步,通过 https://www.cursor.com/ 链接进入 Cursor 产品主页后,在右上角点击下载,下载后解压安装。
2024-11-25
我是一个产品经理但没有编程基础,目标是可以做自己的AI产品,学习AI应该从哪里开始学起
作为没有编程基础的产品经理,学习 AI 可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,了解 AI 提示词工程师的岗位技能要求也会对您有所帮助: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 9. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 10. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 11. 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,虽然您是产品经理,但如果要独立做完整的产品开发,不要寄希望于 0 基础没有额外输入光靠工具就能完成。在开发过程中,可能需要提前学习相关知识和技能。
2024-11-25
怎样学习AI
以下是关于学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 中学生学习 AI 的特别建议 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-11-24
该怎么学习关于ai的内容
以下是关于学习 AI 内容的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 如果希望继续精进,还可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 4. 评估和调优: 性能评估:学会评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-24
学习AI从哪里开始?
对于新手学习 AI,建议您从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-24
有没有suno相关的学习资料
以下是关于 Suno 的学习资料: 音乐生成使用了 Suno,相关教程可参考 Keen 和陈浚嘉的这两篇: Suno 网址: 优点:回答问题更准确、上下文的衔接更好。 限制:需要🪜,需要邮箱注册。 时间:10 min。 价格:每日有免费额度 10 首歌。 Custom Mode:开启为自己有歌词,关闭则给你随机生成歌词,你只要填描述。 Lyrics:直接填歌词即可,可以用熟悉的、喜欢的歌曲原词先感受一下产品功能,会有对比性。 Instrumental:不要歌词、直接出纯音乐的曲子。 Style of Music:写 Prompt 的地方,1 句简短的自然语言描述即可,注意最多 100 字符。 此外,还有可供参考。在自定义模式(Custom Mode)下,有两个主要的输入窗口:音乐风格(Style of Music)与歌词(Lyrics)。音乐风格(Style of Music)需要填写一些 tag 来描述整首音乐的风格和感觉,多个 tag 之间用“,”进行分隔。根据 Suno 的官方文档和测试,可以识别的 tag 包括音乐类型/流派、人声/乐器、情绪/氛围、节奏、场景、混响、其他和声/音效等。
2024-11-24
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23
AI方向产品经理
以下是为您提供的关于 AI 方向产品经理的相关信息: 北京分队中从事 AI 方向的产品经理包括: 枫 share:熟悉 ChatGPT,写过 prompt,使用过 SD、MJ 但有待深入学习,用 PR、剪映剪辑过多个视频和播客音频,正在找 AI 方向的产品岗位,坐标海淀(北五环)。 行远:熟悉 prompt,部署过大模型、绘图项目,使用 Midjourney、sd、pika、suno 等 AI 创作工具,期待学习和实战案例应用,坐标朝阳。 最近的招聘信息中,AI 产品经理的职责描述: 1. 负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。 2. 通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略。 3. 制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行。 4. 提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求: 1. 本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑。 2. 具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 3. 在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验。 4. 对客户需求具有高度敏感度,熟悉竞品分析、定价策略。
2024-11-24
利用哪个AI可以快速了解一个领域的发展方向
以下是关于您问题的回答: 要快速了解一个领域的发展方向,可以从以下几个方面入手: 技术研究方向: 1. 数学基础:包括线性代数、概率论、优化理论等。 2. 机器学习基础:如监督学习、无监督学习、强化学习等。 3. 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:包含语言模型、文本分类、机器翻译等。 5. 计算机视觉:有图像分类、目标检测、语义分割等。 6. 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 1. 编程基础:如 Python、C++等。 2. 机器学习基础:像监督学习、无监督学习等。 3. 深度学习框架:例如 TensorFlow、PyTorch 等。 4. 应用领域:如自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:涉及数据采集、清洗、特征工程等。 6. 模型部署:包含模型优化、模型服务等。 7. 行业实践:比如项目实战、案例分析等。 AI 技术的发展历程和前沿技术点概括如下: AI 技术发展历程: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:像视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:包括自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包括量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,AI 在医疗药品零售领域也有广泛的应用,例如: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。
2024-11-18
认为如果我是一个大学生,想要通过大模型去参加项目什么样的方向会比较好我应该做一个怎样的大模型?
对于大学生想要通过大模型参加项目,以下是一些方向和相关知识: 大模型的概念: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。 3. 找老师:即选择合适的算法让大模型更好地理解 Token 之间的关系。 4. 就业指导:为了让大模型更好地胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,会对输入进行数字化形成词汇表。 大模型的训练: 一般训练会有 3 个步骤,每个步骤都需要资金投入。 1. 无监督学习:模型通过分析大量文本数据,学习语言的基本结构和常识,具备文本补齐能力而非直接回答问题,将人类的知识通过向量化的方法转换,从而获得基础的语言模型。 2. 清洗出好的数据。 3. 指令微调:模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。输入内容包括 3 个部分,中间可能有分隔符。还有对齐过程,通过引入人类的评价标准和处理特定格式要求,进一步优化模型的输出以符合人类的期望。 大模型的微调: 在人工智能领域,通常会根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等,通过训练获得广泛的自然语言理解能力,但在特定领域表现可能不理想。微调是对大模型针对特定领域进行的训练过程,通过在特定领域的数据上训练模型,优化所有层的参数,提高其在该领域的专业性。从头开始训练一个具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可以在现有模型基础上更经济、高效地适应新的应用领域。
2024-11-18
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
总结一下最新AI动态和新闻,各种新技术和新的应用方向
以下是最新的 AI 动态和新闻,以及新技术和新的应用方向: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:涵盖监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:包含语言模型、文本分类、机器翻译等。 计算机视觉:有图像分类、目标检测、语义分割等。 前沿领域:如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涵盖数据采集、清洗、特征工程等。 模型部署:涉及模型优化、模型服务等。 行业实践:包含项目实战、案例分析等。 AIGC 周刊动态: 2024 年 7 月第二周:快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 2024 年 7 月第三周:Anthropic 新增分享和后台功能;LLM 分布式训练框架 OpenDiLoCo;Odysseyml 重构 AI 视频生成技术。 2024 年 7 月第四周:Open AI 发布 GPT4omini、Mistral 发布三个小模型,还有其他一堆小模型等。 2024 年 7 月第五周:Meta 发布的 Llama3.1 405B 模型,具备 128K token 上下文窗口及对 8 种语言的改进,能与领先闭源模型竞争。评估显示其在指令遵循、代码和数学能力上表现优异。同时,还提到 AI 音乐工具 Udio 的大规模更新,以及 OpenAI 推出的 SearchGPT 搜索功能。 新手学习 AI 的方法: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:实践巩固知识,使用各种产品创作,分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-31
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
如果选择一个最需要的AI工具,你会建议我学什么?比如视频剪辑?
如果要选择一个最需要学习的 AI 工具用于视频剪辑,以下是一些相关建议: 工具选择: 剪映是一个较为方便的选择,它具有很多人性化设计和简单的音效库、小特效。但也存在一些不足,如无法协同工作和导出工程文件,难以与其他软件进行工程联通,影响视频的商业化效果。 剪辑流程: 1. 视频粗剪:先确定画面逻辑,声音可作部分参考,快速对片子全貌有整体把握,把素材放上,再进行细节调整和画面替换。画面不需要精美,重点是把握整体。 2. 视频定剪:将画面素材调整和替换到满意效果。 3. 音效/音乐:以剪映为例,有简单音效库,复杂音效可能需另外制作。使用商用音乐要注意版权。 4. 特效:以剪映为例,可适当添加一些光的效果。 5. 包装(如字幕):字幕最后上,剪映可智能匹配字幕再修改。 故事创作: 除了工具,故事也很重要。故事来源有两条路径: 1. 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 2. 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 剧本写作: 编剧有一定门槛,不能仅套剧作理论和模版,要多写多实践,再结合看书总结经验。短片创作可从自身或朋友经历改编入手,或对触动自己的短篇故事进行改编。多与他人讨论故事,有助于修改和进步。 声音制作: 在传统影视制作中,声音部分包括现场录音、后期配音、音效音乐制作等。对于 AI 声音制作对话,如使用 11labs 进行英文对白制作,效果较好但存在没有情绪和情感的问题,需通过标点符号改变语音效果,不断抽卡调试。国内可使用魔音工坊,其有情绪调节控件。 剪辑软件: 对于 13 分钟的短片,剪映较方便;更长篇幅或追求更好效果,可能需使用 PR/FCP/达芬奇等传统剪辑软件。
2024-11-22
给我推荐几个国内使用频率很高的前几位AI吧,可选择的工具太多导致我选择恐惧症犯了
以下为您推荐一些国内使用频率较高的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费最高可达几千元,轻度用户有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,目前免费,每天签到获取灵感值即可,但存在一定局限性,如某些类型图像无法生成等。 2. 其他类别: 百度 Chat:AI 聊天机器人。 360AI 搜索。 AIbot ai 工具集:导航网站。 创客贴 AI:设计工具。 MasterGo:设计工具。 美图设计室:图像编辑。 魔搭社区 阿里达摩院:AI 训练模型。 即时 AI 设计:设计工具。 Boardmix 博思 AI 白板:PPT。 百度飞桨 AI Studio:AI 学习。 字节扣子。 秘塔写作猫:通用写作。 xmind:思维导图。 标小智 LOGO 生成:图像生成。 liblib.art:图像生成。 稿定设计:设计工具。 千帆大模型平台:模型。 DeepSeek:AI 聊天机器人。 墨刀 AI:设计工具。 沉浸式翻译:翻译。 火山方舟:AI 训练模型。 bigjpgAI 图片无损放大:图片增强。 processon:思维导图。 Pika:图生视频。 千库网:资源。 无限画:图像生成。 autoDL 云服务租用。 同花顺问财:金融。
2024-11-17
有可以出选择题的AI工具吗
目前有一些 AI 工具可以生成选择题,例如在一些开放发挥、自选工具的活动中,如“AI 切磋{摆摊}大会✨第四期 7 月 28 日”和“AIPO:校园 AI 创投活动 10 月 8 日 10 月 20 日”,参与者可以根据自己的需求选择工具。同时,在教育领域,借助大模型如 GPT 4.0 等,教师可以获得源源不断的真题库用于出题。但具体使用哪种工具,还需根据您的具体需求和使用场景来确定。
2024-10-29
AI圆桌会议,嘉宾包括通信公司内部管理人员和AI行业关注智慧城市公司技术专家,选择什么话题会比较合适和有吸引力?
以下是一些可能适合在该 AI 圆桌会议上讨论且具有吸引力的话题: 1. 通信技术在智慧城市中的创新应用与 AI 融合。 2. 如何利用 AI 提升通信网络的效率和安全性以支持智慧城市发展。 3. AI 驱动的智慧城市解决方案中的数据隐私和保护策略。 4. 通信公司与智慧城市技术公司在 AI 项目中的合作模式与挑战。 5. 基于 AI 的智慧城市交通管理和优化方案。 6. 通信基础设施对 AI 赋能的智慧城市服务质量的影响。 7. 利用 AI 预测和应对智慧城市中的通信故障和应急情况。 8. 探索 AI 在智慧城市能源管理中的潜力与通信支持。 9. 通信公司和智慧城市公司在 AI 人才培养和引进方面的经验分享。 10. 评估 AI 技术在改善智慧城市通信用户体验方面的成效。
2024-10-17
AI圆桌会议,嘉宾包括通信公司内部管理人员和AI行业外部公司技术专家,选择什么话题会比较合适和有吸引力?
以下是一些可能适合通信公司内部管理人员和 AI 行业外部公司技术专家参与的 AI 圆桌会议话题: 1. AI 在通信领域的应用与创新,包括如何提升通信网络的效率、优化用户体验等。 2. 探讨 AI 技术发展对通信行业商业模式的影响及应对策略。 3. 研究通信行业如何应对 AI 带来的安全和隐私挑战。 4. 分析 AI 如何助力通信公司实现智能化运营和管理。 5. 讨论 AI 人才在通信行业的培养与引进策略。 6. 展望未来通信与 AI 深度融合的发展趋势和前景。
2024-10-16
选择一首诗歌(可以自己写)利用A1工具生成图片
目前利用 AI 工具生成诗歌相关的图片,您可以尝试使用以下几种常见的 AI 绘画工具,如 DALL·E2、StableDiffusion 等。在使用时,您需要将诗歌中的关键元素和意象提取出来,作为输入的提示词,以便 AI 工具能够理解您的需求并生成相应的图片。但需要注意的是,AI 生成的图片效果可能会受到提示词的准确性和详细程度的影响。
2024-10-13