Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

能创建AI智能体的应用

Answer

以下是一些能创建 AI 智能体的应用:

  1. 很多 AI 网站都可以创建“智能体”,您可以为其配置提示词、知识库、能力配置等,从而手搓各种机器人为您工作,例如出试题、找资料、画插图、专业翻译等。
  2. 字节的扣子(Coze)是新一代一站式 AI Bot 开发平台,无论有无编程基础,都能在该平台迅速构建基于 AI 模型的各类问答 Bot,开发完成后还能将 Bot 发布到社交平台和通讯软件上进行交互聊天。创建智能体可通过简单 3 步:起名称、写简单介绍、用 AI 创建头像。
  3. Menlo Ventures 投资组合中的公司如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前需大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。

生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)在这些类别中都是早期突破性的代表,其中心是 LLMs 的少样本推理能力。

AI 智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以 AI 智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的 AI 智能体来解决自己的事情。

Content generated by AI large model, please carefully verify (powered by aily)

References

张翼然:用AI为教师减负(3H).pdf

•把⼤模型当作⼤学⽣OK,当作专家XX•“实习⽣”只能执⾏任务•需要你指明⽅向,拆解任务,教其一步一步操作•像导演一样,编排具体流程,检查结果,修改流程,反复迭代提示语的核⼼是逻辑•“所谓提示词⼯程,核⼼不是你套个什么模板⽤什么格式,⽽是逻辑!!”•逻辑就是你怎么将一个复杂的任务拆成科学合理的步骤,并且让前⾯每一步的结果都成为后⾯步骤的基础,所有步骤合并在一起得到最终的结果,⽽不要指望一步得到结果。•下次写Prompt,效果不理想时,不妨想想看:我是不是可以把这个任务拆分成⼏个步骤?怎么拆分最合理?•顺便说一下:即使你在Prompt⾥⾯指明了步骤,但是如果没有将步骤打印出来,那么也是没有效果的。因为LLM需要基于前⾯的输出结果去预测后⾯的结果,如果没有前⾯步骤的输出,就⽆法影响后⾯的预测结果。很多AI ⽹站都可以创建“智能体”如上图,给配置信息(提示词)、知识库、能⼒配置等你可以⼿搓各种机器⼈🤖,让它们为你⼯作:出试题、找资料、画插图、专业翻译...

AI 智能体:企业自动化的新架构 - Menlo Ventures

生成式AI应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures投资组合公司如[Sana](https://menlovc.com/portfolio/sana-labs/)*(企业搜索)、[Eve](https://menlovc.com/portfolio/eve/)*(法律研究副驾驶)和[Typeface](https://menlovc.com/portfolio/typeface/)*(内容生成AI)在这些类别中都是早期突破性的代表,其中心是LLMs的少样本推理能力。但是生成式人工智能的承诺远远超越了这第一波核心使用案例。能为您阅读和写作的人工智能很棒,但更令人兴奋的是能够代表您思考和行动的人工智能。为此,我们已经看到领先的应用程序构建商如[Anterior](https://www.anterior.com/)、[Sema4](https://sema4.ai/)和[Cognition](https://www.cognition.ai/)正在建立解决方案,来处理之前只能由大量人力来解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和API等新型构建块,下一波智能体正在拓展AI能力的边界,实现端到端流程自动化。在我们深入探讨人工智能体领域的过程中,我们将概述Menlo对新兴市场的论点——首先定义什么是智能体以及什么使它们成为可能。我们将追溯[现代人工智能技术栈](https://menlovc.com/perspective/the-modern-ai-stack-design-principles-for-the-future-of-enterprise-ai-architectures/)从少量样本指令到检索增强型生成(RAG)再到完备的智能体系统的架构演化过程,然后探讨这一范式转变对应用和基础设施层面的影响。

我用扣子做一个简单的智能体——竖起耳朵听

原文链接:https://developer.volcengine.com/articles/7386988670428905510作者:法医[heading2]爆火的AI Agent[content]AI Agent也就是我们所说的AI智能体,那什么是AI智能体呢?简单来说就是拥有各项能力的打工人来帮我们做特定的事情。目前有不少大厂推出自己的AI智能体平台,像字节的扣子,阿里的魔搭社区等等,体验过GPT或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程了,相当于降低了编程的门槛,另外之前在使用GPT或者文心一言大模型的时候会出现胡编乱造的情况以及时效性、无法满足个性化需求等问题,如果这些不解决的话,AI很难被真正广泛应用,而AI智能体的出现正是解决这些问题的绝佳方式,AI智能体包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以AI智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的AI智能体来解决自己的事情。[heading2]扣子Coze[content]📢扣子官网:[https://www.coze.cn/](https://www.coze.cn/)扣子(Coze),作为字节跳动旗下的新一代一站式AI Bot开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于AI模型的各类问答Bot。这些Bot的功能涵盖了从解决简单问答到处理复杂逻辑对话的广泛范围。当我们开发完成后,还可以将自己构建的Bot发布到各种社交平台和通讯软件上,让更广泛的用户群体能够与这些Bot进行交互聊天。[heading2]竖起耳朵听的创建[content]我们可以通过简单3步创建智能体,首先我们要起一个智能体的名称,然后写一段智能体的简单介绍,最后使用AI创建一个头像即可。

Others are asking
我怎样用低代码工具去构建我的AI智能体?LLM应用?
以下是关于如何用低代码工具构建 AI 智能体和 LLM 应用的一些建议: 在构建基于 LLM 的应用时,Anthropic 建议先寻找最简单的解决方案,只在必要时增加复杂度。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。不过,对于许多应用来说,优化单个 LLM 调用(配合检索和上下文示例)通常就足够了。 目前有许多框架可以简化智能系统的实现,例如: 1. LangChain 的 LangGraph。 2. 亚马逊 Bedrock 的 AI Agent 框架。 3. Rivet(一个拖放式 GUI 的 LLM 工作流构建器)。 4. Vellum(另一个用于构建和测试复杂工作流的 GUI 工具)。 这些框架通过简化标准的底层任务(如调用 LLM、定义和解析工具、链接调用等)使入门变得容易,但它们往往会创建额外的抽象层,可能会使底层提示词和响应变得难以调试,也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。建议开发者先直接使用 LLM API,许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。 此外,还有以下相关工具和应用: 1. VectorShift:能在几分钟内构建和部署生成式人工智能应用程序,利用大型语言模型(例如 ChatGPT)构建聊天机器人、文档搜索引擎和文档创建工作流程,无需编码。 2. Unriddle:帮助更快阅读、写作和学习的工具,能简化复杂的主题,找到信息,提问并立即获得答案。 工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加了一个新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLM 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。Omni 的计算 AI 功能体现了这种方法,它利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 详细示例请参考:https://github.com/anthropics/anthropiccookbook/tree/main/patterns/agents
2025-02-17
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
AI编程
以下是关于 AI 编程的相关内容: 12 月 02 日 AI 辅助编程使需求开发范式发生变化。像翻译、数据提取等简单任务可通过 ChatGPT 或 Claude 等 AI 工具解决。AI 功能不断升级,支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展了应用场景。Cursor、v0.dev 等 AI 工具降低了编程门槛,显著提升开发效率,变革了软件工程领域。 快速迭代与发布 MVP 时,应尽早发布产品,不追求完美,以天或周为单位快速迭代,而非按月计划拖延。点子好坏无所谓,快速练手才是关键,以提高效率和实践经验。 12 月 30 日 对于利用固定格式文档结合 AI 进行代码开发,建议发挥组员主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。 后端 Java 程序员转向 LLM 方向,可借助 AI 编程工具(如 Cursor)熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。 1 月 16 日 用好 AI 编程工具(如 Cursor)的关键技能包括准确描述需求、具备架构能力(将复杂系统拆解为松耦合的模块)、专业编程能力(判断 AI 生成代码优劣)和调试能力(快速定位问题并解决)。 包小柏用 AI 技术“复刻”女儿引发思考,AI 可“重现”亲人,缓解失去亲人的痛苦,成为情感寄托的桥梁。通过复刻声纹、影像,实现互动、对话甚至唱歌的效果。这也涉及到伦理与未来,可用于安慰同样经历失亲之痛的人群,并推动相关技术帮助罕见病患者。
2025-02-17
怎样利用AI进行广州小学语文数学英文各科的学习辅导,请给出具体可操作方案,及安排一个学期的日程。
目前没有关于利用 AI 进行广州小学语文、数学、英语各科学习辅导的具体可操作方案及学期日程的相关内容。但一般来说,可以考虑以下步骤: 首先,确定学习目标和重点。针对每门学科,明确本学期需要掌握的知识点和技能。 然后,选择适合的 AI 学习工具。例如,有一些在线学习平台或教育类的 APP ,它们可能提供课程讲解、练习题、智能辅导等功能。 在日程安排方面,可以每周安排一定的时间使用 AI 工具进行学习。比如,周一至周五每天晚上安排 12 小时,分别用于语文、数学、英语的学习。周末可以进行复习和总结。 具体到每天,可以先通过 AI 工具进行知识点的学习,然后做相关的练习题进行巩固,最后利用工具的智能辅导功能解决疑难问题。 需要注意的是,AI 只是辅助工具,不能完全替代教师和家长的指导与监督。
2025-02-17
openai最近有什么新闻
以下是 OpenAI 最近的一些新闻: 1. 12 天连续直播相关结果,昨天 OpenAI 把 o1 模型在 API 中正式发布,之前发布的是 o1 Preview 历史版本,正式版思考花费的 token 少了 60%。 2. 北京时间 9 月 13 号凌晨 1 点多,OpenAI 宣布推出模型 o1preview 与 o1mini,拥有 Plus 版本的用户会陆续收到新模型权限,可在 Web 客户端中尝鲜体验。 3. OpenAI 更新风控与账号共享识别力度,可能会偷偷降低 ChatGPT 模型的调用规格,如 o1pro 降级为 o1。 4. 奥特曼谈 AI 推理能力进展,o1(2024 年 9 月)排名全球第 9800 名,o3(2024 年 12 月)提升至第 175 名,现内部模型已达全球第 50 名,预计今年内登顶第一。
2025-02-17
免费图生视频AI有哪些
以下是一些免费的图生视频 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Adobe Firefly:支持文生视频、图生视频、视频翻译,免费用户赠送生成 2 个视频。访问。 4. 混元:腾讯视频模型,目前只支持文生视频,图生视频即将上线。 更多的文生视频的网站可以查看这里: 内容由 AI 大模型生成,请仔细甄别。
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以规划、子目标和分解、反思和完善、记忆、工具使用等关键组成部分。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 智能体功能实现: 本智能体主要通过一个工作流实现,采用单 Agent(工作流模式)。工作流全景图按照市场分析报告内容划分,分成 7 个分支处理,每个分支调研并生成报告中的一部分,以发挥并行处理的效率。工作流主要节点包括文本处理节点、必应搜索节点、LinkerReader 节点、代码节点、大模型节点和结束节点。文本处理节点将用户输入与报告主题拼装形成关键词句;必应搜索节点根据关键词句搜索相关网络内容;LinkerReader 节点获取网页详细内容;代码节点对搜索到的网页链接信息进行过滤;大模型节点生成报告内容并添加引用链接;结束节点将 7 部分内容拼接并流式输出。
2025-02-17
如何创建属于自己的智能体
以下是创建属于自己的智能体的一般步骤: 1. 对于 Coze 智能体: 打开扣子官网:https://www.coze.cn/ 。 “画小二智能小助手”Coze 商店体验地址:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00 。 点击创建 Bot,在对话框中工作空间选择“个人空间”,命名为画小二智能小助手。 设置画小二助手的提示词。 2. 对于用 Coze 的工作流创建: 打开 Coze 官网 https://www.coze.cn/home 。 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 设定人设和回复逻辑,然后点击右上角发布。 3. 对于智谱 BigModel 共学营第二期的微信助手: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。 参与课程至少需要有 token 体验资源包,获取资源包的方式有:新注册用户注册即送 2000 万 Tokens;充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ,语言资源包:免费 GLM4Flash 语言模型/ ,所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ,共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。
2025-02-16
怎么创建自己的知识库
以下是创建自己知识库的步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。需要注意的是,知识库是共享资源,您的多个 Bot 可以引用同一个知识库。 2. 选择知识库的格式并填写一些信息。目前(2024.06.08)支持三种格式:文档、表格(CSV、Excel 等)、图片(上传一张图片并填写图片文字说明)。格式并不重要,重要的是要了解影响 RAG 输出质量的因素。 3. 以本地文档为例(问答对可以选择表格),选择自定义的文档切割。 4. 完成数据处理。处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,您可以参考这篇教程: 。 创建知识库的小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以进行编辑或删除。
2025-02-15
教培机构怎么创建一个智能体帮我给每一个学生写评价
以下是为教培机构创建一个能为每个学生写评价的智能体的相关指导: 首先,明确评价的维度和标准。可以参考以下几个方面: 1. 语言的准确性、清晰度和规范性,每项 5 分,共 5 分。 2. 讲授的严密性和逻辑性,每项 5 分,共 5 分。 3. 语言的生动性和趣味性,每项 5 分,共 5 分。 4. 针对学生实际的可接受性和启发性,每项 5 分,共 5 分。 5. 语言的艺术性,每项 5 分,共 5 分。 在评价作文方面,需要考虑多个因素,包括:错别字、词、标点识别;好词好句识别、内容评价、逻辑结构评价、语言表达评价、段落评价等。利用大模型高效、准确、丰富知识的优秀特点,对学生作文进行综合打分。 在创建智能体时,要注重以下几点: 1. 让智能体具备深层次语义理解能力,即便处于复杂语境,也能有效辨识出不恰当的词汇和错误的句子构造。 2. 利用大规模数据识别能力,使其能够辨别出哪些词汇或句子搭配在正式书面语中较为罕见,进而准确标出错词错句。 3. 培养智能体基于上下文来判定词语和句子的恰当性,即便是语法正确但语境不适宜的用词也能被有效识别。 4. 让智能体掌握语法规则习得能力,使其能够检测句子是否遵守了语法标准。 同时,写好提示词是创建智能体的第一步。可以参考一些相关的示例,如儿童寓意故事创作者的知识库中的故事,从中学习如何构思和组织语言。 另外,还可以参考之前让 AI 当评委的经验,如通义听悟录音转文字,丢给自编的多个智能体出分数并填结果。结果显示分数高的五位和三位人类评委选出来的前五一致,只是排名有一位的差异。 总之,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以提高评价的准确性和有效性。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
如何创建一个含有物理试题库且能分析试题、命制试题和组卷的的智能体
要创建一个含有物理试题库且能分析试题、命制试题和组卷的智能体,您可以参考以下步骤: 1. 阿里云百炼: 访问百炼控制台中“我的应用”,单击新增应用,在智能体应用页签,单击直接创建。如果您之前已创建过应用,则单击右上角的新增应用。控制台页面链接:https://bailian.console.aliyun.com/?spm=5176.29619931.J__Z58Z6CX7MY__Ll8p1ZOR.1.2f3e59fciQnmL7/home 进入智能体应用管理界面后,选择大模型并进行参数配置。您可以参考相关图示,单击设置,并在模型选择的下拉菜单中选择模型,比如通义千问Max。您可以根据需求进行模型参数的配置。 选择大模型之后,您就在百炼创建完成了一个智能体应用。您可以输入问题进行测试。 2. 智谱BigModel: 注册智谱Tokens:智谱AI开放平台:https://bigmodel.cn/ 参与课程至少需要有token体验资源包,获取资源包的方式有:新注册用户,注册即送2000万Tokens;充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费GLM4Flash语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有GLM4、GLM4VPlus、CogVideoX、CogView3Plus模型。 进入智能体中心我的智能体,开始创建智能体。 3. Coze智能体: 知识库: 本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:,自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。 在线知识库:点击创建知识库,创建一个画小二课程的FAQ知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档,选择自定义的自定义,输入,然后他就将飞书的文档内容以区分开来,这里可以点击编辑修改和删除。点击添加Bot,添加好可以在调试区测试效果。 本地文档:本地word文件,注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。画小二这个课程80节课程,分为了11个章节,不能一股脑全部放进去训练。正确的方法,首先将11章的大的章节名称内容放进来,章节内详细内容格式按固定方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在Bot商店中能够搜到。
2025-02-10
有什么用于搭建页面的ai应用吗
以下是一些用于搭建页面的 AI 应用: 1. 韦恩:扣子“AI 应用”入门 选择桌面网页,进入界面编排页面。 左侧有组件、模板和结构,组件包括布局组件、展示组件、输入组件和 AI 组件等。 中间是页面布局,左侧组件拖入并通过右侧的属性面板、事件面板进行设置。 右侧是属性面板和事件面板,不同组件的事件种类不同。 模板部分有官方提供的参考模板,结构部分方便找到页面及相关组件。 2. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 3. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 4. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 5. The Grid 网址:https://thegrid.io/ 特点:Molly 是 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动优化,支持多种内容类型。 此外,还有韦恩:扣子“AI 应用”进阶中提到的邮票收藏馆应用的搭建案例,包括业务背景与逻辑梳理、页面设计等方面。
2025-02-17
ai在学习领域应用
AI 在学习领域有广泛的应用,具体如下: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考其对未来社会的影响,培养思考和判断能力。 AI 的应用场景还包括: 1. 自动驾驶:用于开发自动驾驶汽车,提高交通安全性和效率。 2. 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流和配送:优化物流路线和配送计划,降低运输成本,包括无人机送货。 4. 教育:实现个性化学习,为每个学生提供定制化的学习体验。 5. 农业:分析农田数据,提高农作物的产量和质量。 6. 娱乐:开发虚拟现实和增强现实体验。 7. 能源:优化能源的使用,提高能源效率。 在教育领域的具体应用: 1. 个性化学习平台:如 Knewton 平台,通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:如 Pearson 的 Intelligent Essay Assessor,利用自然语言处理技术批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 Google 的 AI 教育工具 AutoML,创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实和增强现实:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获得即时反馈。
2025-02-17
有没有形容在ai应用中 数据很重要的图
在 AI 应用中,数据具有极其重要的地位,主要体现在以下几个方面: 1. 训练过程:计算机通过数据进行自我学习,每一层节点代表的含义由数据决定,数据的质量和偏差会直接影响 AI 学习结果。 2. 模型效果:高质量的数据如同精炼后的汽油,能极大提升模型效果。而国内中文互联网数据质量相对较低,获取高质量数据困难,存在“垃圾进,垃圾出”的问题。 3. 企业应用:企业应确保数据的多样性与真实性,进行数据审查和多源验证,避免历史偏见被放大。很多企业虽认识到数据重要,但数据梳理是漫长枯燥的过程。 4. 避免陷阱:要警惕数据陷阱和新的信息茧房,避免因数据问题导致决策失误。
2025-02-17
列出最近很火的10个AI应用
以下是最近很火的 10 个 AI 应用: 1. AI 游戏道具推荐系统:使用数据分析、机器学习技术,已有产品如游戏内商城推荐功能,市场规模达数亿美元,能根据玩家需求推荐游戏道具。 2. AI 天气预报分时服务:运用数据分析、机器学习技术,如彩云天气分时预报,市场规模数亿美元,提供精准的分时天气预报。 3. AI 医疗病历分析平台:采用数据分析、自然语言处理技术,像医渡云病历分析系统,市场规模数十亿美元,可分析医疗病历辅助诊断。 4. AI 会议发言总结工具:借助自然语言处理、机器学习技术,例如讯飞听见会议总结功能,市场规模数亿美元,能自动总结会议发言内容。 5. AI 书法作品临摹辅助工具:通过图像识别、数据分析技术,有书法临摹软件,市场规模数亿美元,帮助书法爱好者进行临摹。 6. AI 摄影参数调整助手:利用图像识别、数据分析技术,一些摄影 APP 有参数调整功能,市场规模数亿美元,可根据场景自动调整摄影参数。 7. AI 音乐情感分析平台:使用机器学习、音频处理技术,如音乐情感分析软件,市场规模数亿美元,能分析音乐的情感表达。 8. AI 家居智能照明系统:基于物联网技术、机器学习技术,像小米智能照明系统,市场规模数十亿美元,实现家居照明的智能化控制。 9. AI 金融风险预警平台:运用数据分析、机器学习技术,如金融风险预警软件,市场规模数十亿美元,可提前预警金融风险。 10. AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,市场规模数亿美元,能根据用户需求优化旅游路线。
2025-02-17
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16