直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

最新AI搜索相关产品总结

回答

以下是关于最新 AI 搜索相关产品的总结:

自今年二月份以来,AI 搜索赛道不断有新的产品出现,市场定位有所差异。

在国内,有大模型厂商推出的 ChatBot 产品,如智谱清言、Kimi Chat、百小应、海螺 AI 等;也有搜索厂商或创业团队推出的 AI 搜索产品,如 360 AI 搜索、秘塔、博查 AI、Miku 等。

在海外,有很多成熟的和新出的泛 AI 搜索产品,如 Perplexity、You、Phind 等。中国公司和团队也有面向全球市场的出海产品,如 ThinkAny、GenSpark、Devv 等。

ThinkAny 选择出海做全球市场,主要考虑国内竞争激烈、用户付费意愿不高、存在政策风险等因素。

从解决的需求或面向的群体分类,可分为通用搜索和垂直搜索两类。通用搜索如 Perplexity、ThinkAny,没有明显的受众倾向,任何人可以搜任何问题,都能得到相对不错的搜索结果。垂直搜索如 Phind、Devv、Reportify,一般面向特定人群或特定领域,在某类问题的搜索上会有更好的结果。

AI 搜索目前主要有两类产品形态:

  1. 大模型厂商或第三方推出的 ChatBot,主要交互是一个对话框+RAG 联网检索,这类产品包括 ChatGPT、Kimi Chat 等。
  2. 专门做 AI 搜索的产品,主要交互是一个搜索框+搜索详情页,这类产品包括 Perplexity、秘塔等。

以下是一些推荐的 AI 搜索引擎:

  1. 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。
  2. Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。
  3. 360AI 搜索:360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。
  4. 天工 AI 搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。
  5. Flowith:一款创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。
  6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。
  7. Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。

这些 AI 搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。但内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

工具:我做了一个 AI 搜索引擎

从今年二月份以来,AI搜索赛道不断有新的产品出来,在市场定位有所差异。我们看到的,大部分聚焦在国内。比如大模型厂商推出的ChatBot产品(智谱清言/ Kimi Chat /百小应/海螺AI等),比如搜索厂商或创业团队推出的AI搜索产品(360 AI搜索/秘塔/博查AI / Miku等)海外也有很多成熟的和新出的泛AI搜索产品(Perplexity / You / Phind等)中国公司和团队也有面向全球市场的出海产品(ThinkAny / GenSpark / Devv等)关于市场定位的问题,跟创始团队的背景或认知有关,没有绝对的好坏。ThinkAny选择出海做全球市场,主要考虑的是:1.国内竞争太激烈,卷不过2.国内用户付费意愿不高,不太好做商业化3.国内有些政策风险,没有成熟的法务合规团队,不太敢尝试通用搜索与垂直搜索除了市场定位,从解决的需求或面向的群体分类,可以分成通用搜索和垂直搜索两类。比如Perplexity / ThinkAny是通用搜索。Phind / Devv / Reportify是垂直搜索。通用搜索一般可以认为,没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果。垂直搜索跟通用搜索比,一般会面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果。比如Devv主要面向的是开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。通用搜索和垂直搜索的好坏,也没有客观的评判标准。普遍的认知是:

工具:我做了一个 AI 搜索引擎

AI搜索无疑是今年开年以来最卷的一个赛道。Perplexity被认为是全球市场的第一个AI搜索产品,起步于2022年12月,在ChatGPT还没有席卷全球之前,率先以搜索+模型问答作为切入点,做出了AI搜索的产品雏形。经过一年多的发展,Perplexity已经成长为全球市场最大的AI搜索引擎产品,最新估值高达30亿美金。在Perplexity之后,AI搜索领域不断有新的产品涌现。我主要从以下几个维度对这个市场的竞争格局做一个简单的分析。产品形态AI搜索目前主要有两类产品形态。一类是大模型厂商或第三方推出的ChatBot,主要交互是一个对话框+ RAG联网检索。这类产品包括ChatGPT / Kimi Chat等。另一类是专门做AI搜索的产品,主要交互是一个搜索框+搜索详情页。这类产品包括Perplexity /秘塔等。以上两类产品形态,除了在交互形式上有所差异。在产品侧重点方面也有所不同。ChatBot类产品依赖的是大模型的理解能力提供问答服务,RAG检索作为一个补充手段,弥补大模型在实时信息获取方面的不足。而专门做AI搜索的产品,主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求。而对话(Chat)则作为一个补充步骤,方便用户对检索结果进行追问或二次检索。很难下结论这两种产品形态哪种更好,跟用户的喜好和使用习惯有关,因人而异。这两类产品都可以归类于AI搜索的大赛道,在做竞争分析的时候,难免要对比分析大模型厂商推出的ChatBot应用。市场定位(出海or国内)

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

其他人在问
AI搜索引擎
以下是为您推荐的一些 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户的搜索效率和体验。 2. Perplexity:聊天机器人式的搜索引擎,允许用户用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 有人做了一个名为“ThinkAny”的 AI 搜索引擎,其作者选择做这个产品基于三个原则:感兴趣、有价值能带来成就感、在能力范围内。作者起初认为搜索引擎技术壁垒高,直到研究了贾扬清老师开源的 Lepton Search 源码和 float32 的 AI 搜索引擎源码,了解到所谓的“RAG”(检索增强生成)底层技术,即检索、增强、生成三个步骤,才决定尝试。 这些 AI 搜索引擎通过不同技术和功能,为用户提供更精准、高效和个性化的搜索体验。同时,新型的 AI 搜索引擎在辅助高效处理信息、让信息表达更简便等方面表现出色,比如智能摘要能辅助快速筛选信息。每个人应根据自己的日常工作流找到适合的工具,就像找到合适的武器能在工作中快速提升战力。关于 AI Agent 的未来,技术迭代会不断向前,曾被认为异想天开的想法都可能成为现实。
2024-11-23
我是新手AI使用者,想使用chatgpt,操作步骤是什么
以下是新手使用 ChatGPT 的操作步骤: 1. 获得 API Key(扣费凭证): 以 OpenAI API 为例,您可以在这个页面找到 API Key:https://platform.openai.com/apikeys 。 打开后,点击「Create new secret key」即可获取。 请注意:通常,您需要绑定支付方式,才可以获取有效 Key。 2. 获得 API 使用的示例代码: 以 OpenAI API 为例,您可以在 Playground 这个页面获取 API 调用的示例代码:https://platform.openai.com/playground 。 并且可以将您和 GPT 的对话,转换成代码。 注意,这里有两个值可以定义,一个是: SYSTEM:对应 ChatGPT 里的 Instructions,用来定义这个 Bot 的功能/特点。 USER:对应 ChatGPT 里,用户发出的信息。 这里,我将 SYSTEM 定义成了缩略信息助手,而在 USER 中输入了文章内容。 运行后,结果很令人满意。 点击右上方 View Code,获取生成这一内容的示例代码。 3. 再问 ChatGPT:顺着之前的对话,让 ChatGPT 帮我们继续写代码。 4. 对于在 Colab 中抓取网页正文内容,如抓取 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ 的正文内容: 在 Colab 中抓取网页的正文内容,您可以使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 首先,确保您已经在您的 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,您可以使用以下命令安装: 然后,使用以下代码抓取并解析指定的网页内容: 这段代码会打印出您提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 运行您的代码: 先复制第一段:!pip install beautifulsoup4 requests ,运行后得到结果。 接下来,点击左上方「+代码」按钮,新建一个新的代码块。 最后,复制后面的代码,并运行,获得结果。
2024-11-23
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
作为一名媒体从业者,可以用AI做出哪些作品
作为一名媒体从业者,可以利用 AI 做出以下作品: 1. 写东西: 草拟任何东西的初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等。 让写作变得更好,将文本粘贴到 AI 中,要求其改进内容,或就如何为特定受众提供更好的建议,还可要求其以不同风格创建多个草稿,使其更生动或添加例子。 帮助完成任务,如写邮件、创建销售模板、提供商业计划的下一步等。 从困难挑战中解锁自己,让自己更有动力。 2. 撰写公众号文章: AI 生产文章的过程相对简单,关键在于提供清晰且具有指导性的提示词。基本提示词能生成基础文章,更详细、具创意的提示词能提升文章质量,更好地捕捉文章的语气、风格和重点。 例如,可给 AI 这样的提示词:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”AI 会生成结构完整、内容丰富、观点鲜明的文章,但最终产出的内容可能需要微调以符合预期和公众号风格。
2024-11-23
请问现在好用的AI图片生产工具有哪些,对人物一致性要求高
以下是一些好用的 AI 图片生产工具,且对人物一致性要求较高: 1. Artguru AI Art Generator:是一个在线平台,能够生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:这是一款 AI 工具,可将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 在使用 AI 生图时,若要保证人物和场景的一致性,有两个取巧的方式:一是像生成动物,动物会比较容易保持一致性;二是特定的名人或有特殊属性的人物。 另外,目前市面上的 AI 工具分为线上和线下本地部署两种。线上的优势是出图速度快,不依赖本地显卡配置,无需下载大型模型,还能参考其他创作者的作品,但出图分辨率有限。线下部署的优势是可以添加插件,出图质量高,但对电脑配置要求高,使用时可能导致电脑宕机。可以充分发挥线上和线下平台的优势,线上用于找参考、测试模型,线下作为主要出图工具。
2024-11-23
国内的,AI学习类关于阅读和听力提升的应用(具备AI能力的应用)或者工具有哪些?
目前国内具备 AI 能力、有助于提升阅读和听力的应用和工具相对较多。例如,流利说英语在听力和口语训练方面表现出色,它能通过 AI 技术为用户提供个性化的学习方案和精准的发音纠正。还有百词斩,其在单词记忆和阅读拓展方面有独特的功能,利用 AI 算法推荐适合用户水平的阅读材料。此外,网易有道词典也具备一定的 AI 辅助功能,能帮助用户提升听力理解和阅读能力。
2024-11-23
请介绍图片搜索最好用的AI工具
以下为您介绍一些在图片搜索相关方面表现出色的 AI 工具: 图片去水印工具: 1. AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象等。 2. Vmake:可上传最多 10 张图片,自动检测并移除水印,适合快速处理。 3. AI 改图神器:能一键去除图片中的多余物体、人物或水印,支持粘贴或上传手机图像。 图生图产品: 1. Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 2. Retrato:将图片转换为非凡肖像,有 500 多种风格选择。 3. Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:将上传照片转换为芭比风格。 图片生成 3D 建模工具: 1. Tripo AI:在线 3D 建模平台,能利用文本或图像快速生成高质量 3D 模型。 2. Meshy:支持文本、图片生成 3D 及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 可通过手绘草图实时设计 3D 形象。 4. Sudo AI:通过文本和图像生成 3D 模型,适用于游戏领域。 5. VoxCraft:免费工具,能将图像或文本快速转换成 3D 模型,提供多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-11-21
360AI搜索
以下是关于 360AI 搜索的相关信息: 360AI 搜索是 360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 其定位是新一代答案引擎,在传统搜索的网页检索能力基础上,结合大型语言模型意图识别、信息提炼、归纳整理、生成文案等一系列技术能力,学习人类的思维和语言组织模式,生成有理有据、逻辑清晰的优质答案。 具有以下特点: 针对模糊问题,可通过反问和几轮交互理解问题,给出答案。 搜索全网上万条相关内容,深度阅读 20+网页,生成的答案非常丰富。 对比大模型产品特别是聊天机器人,回答更具时效性。 通过主动追问帮助用户延展学习,了解更多周边信息。 功能包括阅读提炼全网内容,并归纳总结,相当于替用户读了几十个精选网页,并进行归纳总结。其工作流程为:分析问题语义→提炼搜索关键词→查询全网相关内容→精选出参考价值较高的网页→进行结构化总结,重点突出,详略得当。 在国内总榜中排名第 3,4 月访问量为 1134 万次,相对 3 月变化为 13。 Web 端和 H5 端的网址为: ,手机端可扫码下载 360 AI 搜索 APP。
2024-11-21
生成式搜索和知识问答的区别
生成式搜索和知识问答存在以下区别: 生成式搜索: 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。 知识问答: 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。 一些知识问答系统能够支持在本地运行。 此外,为您推荐一些 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
我想搜索全面彻底的搜索某方面客观存在的事实信息,有什么工具可以实现
以下是一些可以用于全面彻底搜索某方面客观存在的事实信息的工具和相关信息: Coze 手搓的极简版 Perplexity:它旨在结合搜索引擎和 LLM 的优势,提供更优的信息检索体验。但 LLM 本身作为知识问答工具存在缺陷,如无法实时获取最新信息、有“幻觉”问题、无法给出准确引用来源等,而搜索引擎返回的信息呈现形式原始,需要进一步处理。 基于嵌入的搜索:OpenAI 提出,如果作为输入的一部分提供,模型可以利用外部信息源,例如通过嵌入实现高效的知识检索。文本嵌入是衡量文本字符串相关性的向量,相似或相关的字符串距离更近,利用快速向量搜索算法,可将文本语料库分割成块进行嵌入和存储,给定查询后进行向量搜索找到最相关的文本块。相关示例实现可在中找到。关于如何使用知识检索来最小化模型编造错误事实的可能性,可参阅策略“指示模型使用检索到的知识来回答查询”。
2024-11-13
总结大量文字的工具
以下是关于总结大量文字的工具的相关内容: 在当今世界,大型语言模型可用于概括文本,如在 Chat GPT 网络界面中可完成此工作。对于电子商务网站的产品评论,可通过特定提示生成 30 个单词以内的简短摘要,包括 4.1 文字总结、4.2 针对某种信息总结、4.3 尝试“提取”而不是“总结”、4.4 针对多项信息总结等方面。 一些 GPTs 应用可实现相关功能,如 Flow Speed Typist 用于重写混乱文字,AnalyzePaper 用于分析研究论文,GPT Detector 用于识别 AI 生成文本,Math Solver 用于解决数学问题,editGPT 用于校对编辑内容,You Tube Summarizer 用于获取 YouTube 视频摘要等。 除聊天内容外,AI 还能总结各种文章(不超过 2 万字),可直接复制粘贴给 GPTs 进行总结。对于 B 站视频,若有字幕,可通过安装油猴脚本提取字幕,再发给 AI 执行内容总结任务。总结完视频内容后,还可继续向 AI 提问或探讨。
2024-11-21
视频转总结
以下是关于视频转总结的相关内容: 对于文章的总结,可复制不超过 2 万字的文章给 GPTs 进行总结,GPT4 能识别重点内容。 对于 B 站视频的总结,若视频有字幕,可通过以下步骤实现: 1. 确认视频栏下有字幕按钮,说明视频有字幕或已适配 AI 字幕。 2. 安装油猴脚本。 3. 刷新浏览器,点击字幕,会出现“下载”按钮。 4. 选择多种字幕格式下载。 5. 将字幕文字内容全选复制发送给 GPTs 进行总结。 另外,在视频转绘方面: 1. 处理素材时,可将视频导入剪影,对过长、开头或结尾特效等进行处理,如分割、删除模糊片段等,注意导出名称最好用英文。 2. 注意事项包括校准视频比例、处理过大分辨率、拒绝分辨率过差的视频等。 3. 转绘工具可选择 Ebsynth Utility,选取素材要注意主题占画面 50%以上、背景不杂乱、避免特效视频,可通过分享或微信小程序去水印下载不错的视频。
2024-11-20
我是一个大学生,现在需要快速了解一个领域的研究发展脉络,请推荐一个ai软件帮我推荐需要看的论文和总结文章大意
以下为您推荐几款可以帮助您修改医学课题、推荐相关论文并总结文章大意的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。网址:https://scite.ai/ 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。网址:https://chat.openai.com/ 这些工具可以从不同的角度审视和改进您的医学课题,提供专业的修改意见和建议。您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-18
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
有什么能够中总结文章的ai插件么?浏览器插件火狐插件.
以下是一些能够总结文章的 AI 插件: 1. GPTs:可以总结文章,将文章全选复制粘贴发送给它即可,能识别重点内容。 2. 浏览器 Kimi 插件: 安装后,在浏览网络文章时点击插件图标或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi 总结网页内容。 特点包括极简,点击一键总结,无其他花里胡哨的功能;Kimi 无法访问的网页也能总结,如推特等;英文文章可直接用中文总结要点;支持 Dark Mode。 注意事项:本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品;由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 Kimi 阅读助手:这个插件支持快捷调用 Kimi,将当前页面打包成一个.md 文件喂给 Kimi,历史会话中能看到刚才的记录,总结模型可自己选择。 注意:需要 Chrome 114 及以上版本才能正常使用扩展;暂不支持 Arc 游览器(Arc 缺少相关 API)。
2024-11-18
有什么能够中总结文章的ai插件么?浏览器插件
以下是为您推荐的能够总结文章的浏览器插件: 1. Kimi Copilot 网页总结助手 概述:安装后,在浏览网络文章时点击插件图标,或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi 总结网页内容。 特点: 极简,点击一键总结,无其他花里胡哨的功能。 Kimi 无法访问的网页也可进行总结,如推特等。 英文文章直接用中文总结要点。 支持 Dark Mode。 注意: 本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品。 由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 2. Kimi 阅读助手 概述:这个插件支持快捷调用 Kimi,然后将当前页面打包成一个.md 文件喂给 Kimi,历史会话中能看到刚才的记录。 注意: 需要 Chrome 114 及以上版本才能正常使用扩展。 暂不支持 Arc 游览器(Arc 缺少相关 API)。 您可以通过 Google 应用商店获取这两个插件,具体链接为: 不方便下载的,文末附下载链接。
2024-11-18
最新AI资讯
以下是为您提供的最新 AI 资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: ShowMeAI 周刊 No.12 方面: JENOVA:AI Reddit 搜索& AI Youtube 搜索功能上线,以及为啥这个需求爆了? Artifacts:与 AI 交互的形式,正在被开发者们玩出新花样 画布:更彻底的 AI 交互革命,从一维走向二维的 LLM 交互新体验 再见,会读!为体面的退场鼓掌!&&源源不断冒出的更多新产品们 AI 编程:江山代有 AI 出,各领风骚数十天,以及 AI Coding 赛道洞察 AI 陪伴:EVE 创始人 VS C.AI 工程师,到底谁才是真正的 AI 陪伴? AI 原生游戏:1001 Nights 和 Oasis,两个极端,哪种才是真正的 Native 方向? Kimi:杨植麟身陷诉讼风波,发布数学推理模型 k0math,但是回应不了一切? Scaling Law:如果此路不通向 AGI,敢问路在何方? 社群讨论:如何选择创业产品的承载形式:App、网站、小程序
2024-11-22
AI 的最新资讯
以下是为您整理的 AI 最新资讯: 新手学习 AI 方面:AI 是快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 方面: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: XiaoHu.AI 日报 10 月 10 日方面: PMRF:全新图像修复算法。擅长处理去噪、超分辨率、着色、盲图像恢复等任务,生成自然逼真的图像。不仅提高图片清晰度,还确保图片看起来像真实世界中的图像。能应对复杂图像退化问题,修复细节丰富的面部图像或多重损坏的图片,效果优质。详细介绍: 2024 年诺贝尔化学奖授予三位科学家:大卫·贝克、丹米斯·哈萨比斯、约翰·乔普。表彰贝克在计算蛋白质设计的贡献,以及哈萨比斯和乔普在蛋白质结构预测方面的杰出贡献。 nworld AI 发布《Beyond 2024》,具有动态游戏 AI,角色和系统根据玩家行为和环境做出实时反应,敌对角色动态调整策略,NPC 拥有独立思维。复杂动作与互动方面,AI 不再局限于对话,还能执行复杂动作,决策算法和认知系统增强了游戏中的 AI 表现。协作支持方面,AI 代理不仅在游戏中协作,还可为老年人提供局部支持,独立做出策略选择。
2024-11-22
AI目前最新发展是什么
AI 目前的最新发展包括以下几个方面: 1. 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 2. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 3. 产品设计和商业化思路的变化: 从通用能力到专业化细分:如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具)等,每个细分领域的产品都在不断提升核心能力,为用户提供更精准和高质量的服务。 商业模式的探索与创新:ToB 市场的深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从单纯的技术展示向解决用户痛点和创造商业价值转变。 此外,AI 是一个快速发展的领域,新的研究成果和技术不断涌现。新手可以通过持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流来保持对最新发展的了解。
2024-11-18
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14