直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI agent 落地例子

回答

以下是关于 AI agent 的相关信息:

  • AI agent 是在 rag 的基础上更进一步,给大模型提供了更多工具,如长期记忆(相当于给大模型一个数据库工具记录重要信息)、规划和行动(在大模型的 prompt 层做逻辑,将目标拆解并输出固定格式的 action 指令给工具)。例如可以让大模型安排差旅,它会判断完成目标所需步骤,搜索差旅记录,预订酒店和机票等。
  • 一些 Agent 构建平台包括:
    • Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力。
    • Microsoft 的 Copilot Studio:具备外挂数据、定义流程、调用 API 和操作等功能,并能部署到多种渠道。
    • 文心智能体:百度推出的基于文心大模型的智能体平台。
    • MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。
    • 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。
    • 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。
  • 大型语言模型置于 Agent 的“大脑”或“控制器”核心位置,赋予强大语言理解和生成能力。通过多模态感知技术和工具利用策略扩展感知和行动范围,采用思维链和问题分解技术展现出推理和规划能力,能从反馈中学习并与环境互动,在软件开发、科学研究等现实世界场景中得到应用,还能与其他 Agent 交流协作。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。说实话我对于Agent产品我还是比较看好的,当然这不仅因为我曾经落地过实际的Agent产品,实在也是因为我认为这代表了我们可以在流程中给到大模型使用工具的能力,这其实就给了大模型应用更广阔的空间。比如我可以大模型帮我把差旅安排一下,大模型首先会判断一下为完成该目标,拆解需要有哪几个步骤要做(planning能力),然后搜索近期我oa工具中的差旅记录(memory能力),然后在飞猪上帮我预订酒店和机票(tools/action能力),最终完成任务。

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

AI-Agent系列(一):智能体起源探究

大型语言模型(LLM)以其令人瞩目的新能力,赢得了业界的广泛关注和赞誉,激发了研究人员探索其在构建人工智能Agent方面的潜力。这些模型被巧妙地置于Agent的"大脑"或"控制器"的核心位置,赋予它们强大的语言理解和生成能力。为了进一步扩展这些Agent的感知和行动范围,研究人员采用了多模态感知技术和工具利用策略,使Agent能够理解和响应多种类型的输入,并有效地与环境互动。通过思维链(Chain of Thought)和问题分解技术,这些基于LLM的Agent展现出了与符号主义Agent相媲美的推理和规划能力。这些Agent还能够通过从反馈中学习,并执行新的行动来与环境互动,表现出类似反应式Agent的特性。它们在大规模语料库上进行预训练,并通过少量样本展现出泛化能力,这使得它们能够在不同任务之间实现无缝转移,而无需更新模型参数。基于LLM的Agent已经在软件开发、科学研究等现实世界场景中得到应用。它们利用自然语言理解和生成的能力,能够与其他Agent进行无缝的交流和协作,甚至在竞争中也能发挥重要作用。

其他人在问
写文书需要用什么ai?
在写文书方面,以下是一些相关的 AI 工具和应用方式: 对于孩子写作文: 如果担心孩子用 AI 代写作文偷懒,可以把任务改成让孩子提交一份他和 AI 共同完成作文的聊天记录。作文由 AI 来写,孩子要对 AI 的作文进行点评批改、让 AI 迭代出更好的文章。评价的关注点在于对话记录里孩子能否说清楚 AI 写的作文哪里好哪里不好、要怎么改(孩子可能还得给 AI 做示范)。 在论文写作领域: 文献管理和搜索:Zotero 结合 AI 技术可自动提取文献信息,Semantic Scholar 是由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议,Quillbot 可进行重写和摘要,帮助精简和优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化,Knitro 用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式:LaTeX 结合自动化和模板处理论文格式和数学公式,Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 可检测抄袭,确保论文原创性。 需要注意的是,使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-17
有哪些ai可以直接制作Excel表格的
以下是一些可以直接制作 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 可自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. GPTExcel:在相关排行中有所体现。 6. SheetGod:在相关排行中有所体现。 7. 酷表 ChatExcel:在相关排行中有所体现。 8. GPT Workspace:在相关排行中有所体现。 9. OpenAI in Spreadsheet:在相关排行中有所体现。 10. Ajelix AI Excel Tools:在相关排行中有所体现。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
ai生成配图
以下是关于 AI 生成配图及相关内容的信息: 如果您想用 AI 把小说做成视频,大致的制作流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,关于 Runway 生成 AI 动画,可以使用图片+文字描述功能,将 MJ 生成的图片增加对应的动态描述,输入 Runway,同时增加镜头变换的设置(具体教程看)。悦音 AI 配音具有旁白质感,如磁性浑厚、大片质感、娓娓道来。
2024-11-17
如何用AI提高学习效率
以下是关于如何用 AI 提高学习效率的方法: 一、学习外语 1. 语言学习应用 Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,重点是实际交流所需技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度,提供适合练习和反馈。注册并选择语言,使用多种练习模式学习。 2. AI 对话助手 ChatGPT:可模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,与 AI 对话,询问语法、词汇等问题,模拟交流场景。 Google Assistant:支持多种语言,用于日常对话练习和词汇学习。设置目标语言,通过语音或文本输入互动。 二、英语学习 1. 智能辅助工具:利用 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用 Duolingo 利用 AI 量身定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:利用 ChatGPT 进行会话练习和对话模拟,提高交流能力和语感。 三、数学学习 1. 自适应学习系统:使用 Khan Academy 结合 AI 提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用 Photomath 通过图像识别和数学推理技术提供解答和解题步骤。 3. 虚拟教学助手:使用 Socratic 利用 AI 解答问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的课程和实践项目,利用 AI 进行数学建模和问题求解。 四、未来教育中 AI 的应用 1. 个性化学习平台:如 Knewton 平台,利用数据分析构建个性化学习路径,预测学习难点并提供解决方案,提升学习效率。 2. 自动评估:如 Pearson 的 Intelligent Essay Assessor,通过自然语言处理技术自动批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 Google 的 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实和增强现实:如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生安全进行实验操作并获取 AI 反馈。
2024-11-17
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗
以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,在 AI 文章排版方面,以下工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
我如果要自建一个Agent,该怎么做
自建一个 Agent 可以按照以下步骤进行: 1. 从案例入门 三分钟捏 Bot Step 1:(10 秒)登录控制台 登录扣子控制台(coze.cn)。 使用手机号或抖音注册/登录。 Step 2:(20 秒)在我的空间创建 Agent 在扣子主页左上角点击“创建 Bot”。 选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”,并点击“确认”完成配置。如需使用其他空间,请先创建后再选择;Bot 名称可以自定义。 Step 3:(30 秒)编写 Prompt 填写 Prompt,即自己想要创建的 Bot 功能说明。第一次可以使用一个简短的词语作为 Prompt 提示词。 Step 4:(30 秒)优化 Prompt 点击“优化”,使用来帮忙优化。 Step 5:(30 秒)设置开场白 Step 6:(30 秒)其他环节 Step 7:(30 秒)发布到多平台&使用 2. 进阶之路 15 分钟做什么 查看下其他 Bot,获取灵感 1 小时做什么 找到和自己兴趣、工作方向等可以结合的 Bot,深入沟通 阅读以下文章:文章 1、文章 2、文章 3 一周做什么 了解基础组件 寻找不错的扣子,借鉴&复制 加入 Agent 共学小组 尝试在群里问第一个问题 一个月做什么 合理安排时间 参与 WaytoAGI Agent 共学计划 自己创建 Agent,并分享自己捏 Bot 的经历和心得 3. 在 WaytoAGI 有哪些支持 文档资源 交流群 活动 工具篇: 1. 人和动物的本质区别之一,就是会使用工具,因此工具也是智能体中非常基础和重要的一环。 2. 通常 Agent 框架中会自带非常多的工具,请先熟悉这些自带的工具。 制作工具 互联网 API 工具:Jina 说明: 手册:https://jina.ai/ 工具:高德 API 说明:是高德地图提供的一套开放接口,可以实现地图展示、地理编码、逆地理编码、路径规划、地点搜索等功能。开发者可以通过调用这些 API 来实现自己的地图应用。 手册:https://lbs.amap.com/api/ 本机软件 自行构建 平台自带工具/插件 特别推荐:大聪明的插件:webcopilot Coze.cn 插件列表: coze 插件说明文档 👀小技巧:采用罗文提供的提示词可以获取插件说明:(⚠️施工中...目前差错非常多,暂时处于不可用状态,在后续持续的共创活动中将逐步完善) 文章:LLM 驱动的自主 Agents | Lilian Weng 1. 实例探究 概念验证示例 引起了人们对建立以 LLM 作为主控制器的自治 Agents 的可能性的广泛关注。考虑到自然语言界面,它存在很多可靠性问题,但仍然是一个很酷的概念验证演示。AutoGPT 中的很多代码都是关于格式解析的。 这是 AutoGPT 使用的系统消息,其中{{...}}是用户输入。 是另一个项目,用于根据自然语言指定的任务创建整个代码存储库。GPTEngineer 被指示思考一系列较小的组件来构建,并根据需要要求用户提供输入以澄清问题。 以下是发送到 GPTEngineer 使用的 OpenAI ChatCompletion 端点的用于说明任务的示例对话。用户输入被包装在{{user input text}}。 然后,在这些澄清之后,Agents 进入代码编写模式并显示不同的系统消息。系统消息: 对话样本:
2024-11-08
agent案例
以下是为您提供的关于 Agent 的相关案例和信息: 四种 Agent 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代。例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,然后反复进行,完成自我迭代。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 智能体的类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并采取行动。例如自动驾驶汽车。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 学习型智能体(Learning Agents):能够通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。 从产品角度思考 Agent 设计: Agent 可以是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可设计简短背景故事。 写好角色个性包括:编写背景故事明确起源、经历和动机;定义性格特点和说话方式风格;设计对话风格;明确核心功能和附加功能。
2024-11-05
AI Agent 规划是什么,怎么使用
AI Agent 规划是一个复杂但关键的概念,主要包括以下方面: 自行规划任务执行的工作流路径,适用于简单或线性流程的运行。例如,先识别男孩的姿势,再利用相关模型合成新的女孩图像,接着使用特定模型处理,最后进行语音合成输出。 包含子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标,以处理复杂任务。反思与改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 规划通常涉及五种主要方法: 任务分解:将复杂任务分解为简单子任务以简化问题,如 CoT(2022)、ReAct(2022)、HuggingGPT(2023)等。 多计划选择:生成多个备选计划并通过搜索算法选择最优计划执行,如 ToT(2023)、GoT(2023)、LLMMCTS(2023)。 外部模块辅助规划:引入外部规划器来提升规划过程,解决效率和可行性问题,如 LLM+P(2023)、LLMDP(2023)、DRRN(2015)。 反思与细化:通过反思和细化提高规划能力,纠正错误,如 Reflexion(2023)、CRITIC(2023)、SelfRefine(2023)。 记忆增强规划:利用额外记忆模块增强规划能力,存储有价值的信息,如 REMEMBER(2023)、MemoryBank(2023)。 在使用方面,AI Agent 的规划可以帮助其更高效、准确地完成任务,例如在多角色协作的场景中,不同角色的 Agent 相互协作,根据需求共同开发一个应用或者复杂程序。同时,OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。
2024-11-05
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
AI在会计岗位落地的场景
AI 在会计岗位落地的场景包括以下方面: 1. 预测:生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,并提供适应模型的建议,为公司决策提供依据。 2. 报告:生成式 AI 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务:会计和税务团队在咨询规则和应用方面,生成式 AI 可以帮助综合、总结,并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款:生成式 AI 能够帮助自动生成和调整合同、采购订单和发票以及提醒。 5. RPA 方面:RPA 是流程自动化机器人,可替代电脑办公中的重复有逻辑工作,为企业降本增效。在财务领域,可用于开票、网银流水下载等。 6. 税务工作:在金税四期背景下,利用引刀 AP 创建网页实现智能解答税务问题,结合飞书避免信息泄露和实现自动回复等。
2024-11-15
AI 在教育行业的落地场景有哪些
AI 在教育行业的落地场景主要包括以下几个方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供定制化的学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP),如 Pearson 的 Intelligent Essay Assessor,自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML,创建定制的学习内容,引导学生通过对话学习,提供即时反馈,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):如 Labster 的虚拟实验室平台,提供虚拟实验场景,让学生安全进行实验操作并获得 AI 系统反馈。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文相关:包括论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等的教育资源。
2024-11-15
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
怎么样写prompt?有哪些技巧?你能举个例子吗
写 prompt(提示)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写 prompt 的技巧和建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等特定要求。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整 prompt。 此外,还有“Fewshots”的技巧,即在写 Prompt 时,通过提供 1 3 个输入 输出示例,让 GPT 学到样本共性,提升输出结果质量。比如: 初始 Prompt: 你是一个优秀的翻译人员,你会把我说的汉字翻译成英文和日语,日语同时展示日语汉字和假名。不要有任何额外的解释说明。 输入:邻居 输出:Neighbor 输入:自行车 输出:Bicycle 结构化的 prompt 方法论中,结构化是对信息进行组织,使其遵循特定模式和规则,方便有效理解。常用模块包括: Role:<name>:指定角色让 GPT 聚焦对应领域输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT 聚焦。 Constrains:描述限制条件,帮 GPT 剪枝。 Skills:描述技能项,强化对应领域信息权重。 Workflow:重点,希望 Prompt 按特定方式对话和输出。 Initialization:冷启动时的对白,强调重点。
2024-10-22
猿辅导 作业帮等软件与Ai技术可结合的例子
以下是猿辅导、作业帮等软件与 AI 技术可结合的例子: 英语学习方面: 1. 智能辅助工具:如利用 Grammarly 进行英语写作和语法纠错,提升写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈。 3. 自适应学习平台:如 Duolingo 利用 AI 技术定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:借助 ChatGPT 进行英语会话练习和对话模拟,增强交流能力。 数学学习方面: 1. 自适应学习系统:例如 Khan Academy 结合 AI 技术提供个性化学习路径和练习题。 2. 智能题库和作业辅助:如 Photomath 通过图像识别和数学推理技术提供解答和解题步骤。 3. 虚拟教学助手:使用 Socratic 利用 AI 技术解答问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的课程和实践项目,利用 AI 技术进行数学建模和求解。 通过将 AI 技术与传统学习方法相结合,可以更高效、更个性化地进行英语和数学学习,提高学习效果。 此外,AI 还可以在以下领域与相关应用结合: 1. AI 与宠物结合: AI 宠物助手:基于自然语言处理和计算机视觉,自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:开发智能互动玩具,增强宠物娱乐体验。 AI 宠物图像生成:根据文字描述生成宠物形象图像,定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析行为模式,帮助主人了解宠物需求和习性。 2. 能联网检索的 AI: ChatGPT Plus 用户可开启 web browsing 功能实现联网。 Perplexity 结合问答和搜索引擎功能,可指定搜索源类型。 Bing Copilot 简化在线查询和浏览活动。 如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保护用户数据隐私。
2024-10-12
举一个prompt的例子吧
以下为您提供几个 prompt 的例子: 在音乐风格方面,例如“Pink Floyd 的《Comfortably Numb》”,关联流派为 Progressive Rock、Psychedelic Rock、Art Rock。 在法律领域,如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”。 对于大模型,像“假设你是一位医生,给出针对这种症状的建议”,还可以要求模型按照特定格式输出,如“让模型按照特定格式的 json 输出”。
2024-10-09
AI能够取代人类的什么工作场景,请简单举个实际的例子
AI 能够在一些工作场景中取代人类,例如: 在一些重复性高、规律性强的工作中,如数据录入、文件整理等,AI 可以更高效地完成任务。 某些简单的客服工作,AI 能够根据预设的回答模式处理常见问题。 不过,AI 无法完全取代需要人际交往、团队领导和复杂决策制定的角色。像云架构师、网络架构师和企业架构师等职位,不仅需要技术知识,更需要与人沟通、管理利益相关者和领导团队的能力。此外,企业领导者在利用 AI 提高工作效率的同时,仍需将更多精力投入到创新和战略规划上。 同时,知名投资机构 Nfx 在他们最新的《The AI Workforce is Here:The Rise of a New Labor Market》中提到,Sam Altman 经常提到 AGI 到来的定义之一就是 AI 能替代百分之七十的人类工作。现在 AI 正在强制逆转 SaaS 这个缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务,也能执行任务,无需雇佣额外劳动力,传统的劳动力市场最终将和软件融合成为一个新市场。
2024-09-04
向量数据库高效储存是什么意思 举个例子
向量数据库高效储存指的是专门用于存储高维向量,以实现快速准确的相似性搜索。在人工智能领域,尤其是自然语言处理和计算机视觉等方面,模型会生成并处理大量高维向量,传统数据库难以有效应对,向量数据库则为这些应用提供了高度优化的环境。 例如,像 GPT3 这样的大型语言模型,有 1750 亿个参数,会产生大量向量化数据,传统数据库很难有效处理,而向量数据库能够有效地管理和查询这些向量。 从系统角度看,预处理管道中向量数据库至关重要,负责高效存储、比较和检索多达数十亿的嵌入(即向量)。市场上常见的选择如 Pinecone,完全由云托管,容易上手,具备大型企业在生产中所需的多种功能。同时,还有 Weaviate、Vespa 和 Qdrant 等开源系统,通常具有出色的单节点性能,可针对特定应用定制;Chroma 和 Faiss 等本地向量管理库,有丰富的开发人员经验,便于启动小型应用程序和开发实验;pgvector 之类的 OLTP 扩展,对于特定开发人员和企业也是一种解决方案。 向量存储是用于存储和检索文本嵌入向量的工具,这些向量是文本数据的数值表示,能让计算机理解和处理自然语言。其主要功能包括高效存储大量文本向量、快速检索相似文本向量以及支持复杂的查询操作,如范围搜索和最近邻搜索。
2024-08-27
相似性度量的例子
以下是一些相似性度量的例子: 在商业化问答场景中,使用余弦相似性来计算问题向量和各个文档向量之间的相似度,以找出与问题内容最为接近的文档。 在评估 GPT4 生成答案的真实性时,使用包括 ROUGE、BLEU 和 BLEURT 等标准相似度度量标准,将生成的回答与提供的参考(「gold」)答案进行比较,若得分高于预先确定的阈值,则认为生成的回答是真实的。
2024-08-27