直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

现在有多少个agent平台

回答

以下是一些常见的 Agent 平台:

  1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具以拓展 Bot 能力边界。
  2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
  3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。
  4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。
  5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。
  6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。

此外,随着 AI 的发展,还有一些相关的研究和报告,如生成式 AI 季度数据报告 2024 月 1 - 3 月中提到的 Agents a16z 图谱等。但需要注意的是,这些平台都有各自的局限性。您可以根据自己的需求选择适合的平台进行进一步探索和应用。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:有哪些好的Agent构建平台

以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

(筹划中)「Agent共学」之"两天学会用AI建站"

|月日20:00开始|备选:coze应用制作|0基础小白|健健||-|-|-|-||月日<br>20:00开始|用AI打造你专属的浏览器插件|进阶级|银海||月日<br>20:00开始|用AI打造个人网站|0基础小白|大雨||月日<br>20:00开始|大消费得奖者bot拆解分享|0基础小白|作者x罗文||月日<br>20:00开始|优秀作品启发:创意分享|0基础小白|元子||月日<br>20:00开始|卡片+快捷指令+消息|0基础小白|Stuart||月日<br>20:00开始|成功bot背后的男人(们)|0基础小白|维恩||月日<br>20:00开始|知识库基础||大圣|随着AI的发展,大家对AI的诉求变得越来越具体,简单的ChatBot的弊端日渐凸显,基于LLWeng对于Agent的结构设计,Coze,Dify等平台在应用探索上有了很大的进展。年初吴恩达基于Agent应用,场景,需求等分析以后,做了4个分类:--然而这些平台都有着固有局限,正如低代码平台,无代码平台历经数十年的发展,依然无法很好平衡复杂业务场景无法满足,简单业务场景ROI不高等限制。对于专业IT人士,coze等平台不够自由,局限性过大,对于普通用户,想要完成复杂的业务场景又有着诸多的限制。软件技术的发展,一直在对抗需求的日益复杂化,最终不得不借助编程这个朴实的手段。

生成式AI季度数据报告_2024Q1.pdf

aiwatch.aiSource:https://twitter.com/omooretweets/status/1740774601876177375 152E2B Agent系列图谱aiwatch.aiSource:https://github.com/e2b-dev/awesome-ai-agents 153E2B Agent系列图谱aiwatch.aiSource:https://github.com/e2b-dev/awesome-ai-sdks 154E2B Agent系列图谱aiwatch.aiSource:https://twitter.com/tereza_tizkova/status/1780763730877497840/photo/1 1554.7 Agent 806万赛道•天花板潜力:几百亿美金; •对标公司:Gitlab,Atlassian •总体趋势:高速增长,66.87% •月平均增速:108万PV/月•原生产品占比:高,~100%竞争• Top1:41%• Top3:77%•马太效应:弱•网络效应:中•大厂是否入局:是•大厂占比:较高•技术门槛:高 Top1公司(非大厂)• Top1产品及所在公司:GitLab •估值:90亿美元(24.4)•收入:36.72亿$(2023)• P/S:14.59x •最新月PV:230万•单用户PV价值:N.A.(核心商业化非web端流量)

其他人在问
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 相关链接: 1. 2. 3. 4. 5. 6.
2024-12-17
基于知识库做备考AI Agent,我该怎么做
以下是基于知识库为您提供的备考 AI Agent 的建议: 首先,建议您先吃透 prompt,这对于学习 AI Agent 很重要。 在 cost 平台有丰富的教程和比赛,您可以参与其中。 了解到 AI agent 是大语言模型衍生出的智能体,用于解决大模型在处理复杂任务时存在的一些问题,如无法获取最新外部信息、缺少规划、没有记忆能力等。 明天银海老师将详细讲解 AI agent,您可以关注。 此外,知识库中还提到了一些相关的活动和内容,如 prompt battle、AI 神经大赛等,您可以根据自己的兴趣参与。 对于与 AI 会话相关的内容,您可以通过关键词学设进行学习,比如每日选词丢入稳定扩散模型,积累大量提示词,还建有飞书群供感兴趣的同学加入练习。 在 AI 绘画方面,是视觉基础,有针对 AI 绘画学社做的关键词词库精选活动。同时,还收集了 AI 视频类词汇和相关词典,更具象的描述词汇能让模型发挥更好效果。 希望以上内容对您备考 AI Agent 有所帮助。
2024-12-16
怎么做一个搜索ai新闻的agent
要做一个搜索 AI 新闻的 agent,您可以参考以下步骤: 1. 设定 Bot 的人设与回复逻辑。 2. 为 Bot 配置技能: 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 3. 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 4. (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 6. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-12
“通往AGI之路”是个怎样的平台
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能(AI)学习的中文知识库和社区平台。 它具有以下特点: 1. 提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助学习者有效地获取 AI 知识,提高自身能力。 2. 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 3. 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI(视觉识别)融合了独特的设计元素: 1. 以彩虹色作为主要的配色方案,代表多样性、包容性和创新,象征着人工智能领域的无限可能和多维视角。 2. 品牌的标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,鹿的形象优雅而智慧,寓意在追求 AGI 过程中的品味与睿智。 3. 选择简洁现代的非衬线字体,这种字体风格简约而现代,易于阅读,强调了信息传达的清晰度和直接性。 2023 年 4 月 26 日诞生,在没有任何推广的情况下,一年的时间已经有超过 70 万用户和超千万次的访问量,是很多 AI 爱好者知识的源头。社群的 Slogan 是让更多的人因 AI 而强大,有很多学社和共学共建的活动。打开“waytoagi.com”就可以找到社群。如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。
2024-12-21
适合游戏设计的aigc平台
以下是一些适合游戏设计的 AIGC 平台及相关案例: 1. 上海人工智能实验室旗下的 OpenInnoLab平台:北京市新英才学校的“AI 创作家”课程中,学生使用该平台的文生图 AI 工具生成桌游卡牌背后的图案。 2. 在“DragonX”宠物龙养成游戏中,Demo 的原则为 AIGC 的最大化,玩法内容基本都使用 AIGC 来生产游戏内容,包括世界观、核心循环、核心玩法等方面。 3. 关于游戏设计与 AIGC 的相关讨论:“质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期”涵盖了游戏与生成式 AI 的发展趋势、游戏+AI 制作的讨论、资本市场对 AI+游戏的看法、AI 对游戏领域带来的变革以及新 AI 游戏面临的问题等多方面内容。
2024-12-18
智能体平台审核
以下是关于智能体平台审核的相关信息: 在 Zion 中配置变现模板时,智能体沟通页面采用 OAuth 鉴权机制。获取 Coze bot 应用鉴权密钥需在 Coze 主页操作,生成的公私钥要妥善保管。获取 Bot ID 则要进入自己的智能体在地址栏内复制相关数字,且 bot 发布时要选择 Agent as API,并记得勾选 API 及 WEB SDK。Coze bot 发布存在审核周期,一般为 1 30 分钟,若未审核通过或首次发布处于审核状态,bot 将无法被其他用户访问,需确认发布成功。 轨道智能体被赋予更高级目标和更多自由度,受程序性知识指导,拥有预定义工具并受审查措施约束。运行时会有规划智能体评估应用程序状态、选择并执行最佳链条等模式,此架构可能需要额外的数据基础设施支持。 在「Agent 共学」之 coze 模板搭建大赛中,评审方为扣子和火山引擎。总分 100 分,由智能体评分(70%)和说明文档评分(30%)构成。智能体评分维度包括规范性、专业性、技术性和体验性;说明文档评分维度包括作品创意、实现原理与功能、文档结构。
2024-12-17
我是一个政府部门的基层工作人员,平时要填报各种表格,使用很多系统平台,对接很多乡镇负责人,接很多电话,请问我应该如何学习和运用AI工具让我更快更好地完成工作呢?
对于您的工作情况,以下是一些建议来帮助您学习和运用 AI 工具以提高工作效率和质量: 首先,您可以考虑使用自动化表格处理工具。这类工具能够根据您设定的规则和模板,自动填写和整理表格中的数据,减少手动输入的时间和错误。 其次,利用智能客服系统来处理一部分常见的咨询和问题。您可以将常见问题和回答录入系统,让其自动回复一些简单和重复的咨询,从而节省您接电话的时间。 另外,使用智能办公助手来协助您管理和安排工作任务。它可以根据您的工作优先级和时间安排,提醒您各项任务的截止日期和重要程度。 在学习这些 AI 工具时,您可以先从简单易用的工具入手,通过在线教程、操作手册和视频教程来熟悉其功能和操作方法。同时,多与同事交流和分享使用经验,共同探索如何更好地将 AI 工具应用到工作中。 希望以上建议对您有所帮助。
2024-12-15
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
gpu算力平台
以下是关于 GPU 算力平台的相关信息: NVIDIA 推出全新 GPU 平台 Blackwell,涵盖与 Hopper 兼容的普通系统和与 Grace CPU 连接的专用系统,提供前所未有的算力,有望突破物理极限,为互联网产业注入新动力。配备第五代 NV Link 的全新 Transformer 引擎速度惊人,新型超算的高速运转离不开早期问题检测和替换机制,数据加密也至关重要。全新的 FP8 格式大幅提升计算速度,NVLink 交换芯片实现所有 GPU 同时全速通信,直接驱动铜技术的突破让系统更加经济实惠。训练一个 1.8 万亿参数的 GPT 模型,Blackwell 相比传统方法优势明显,AWS、GCP、Oracle、微软纷纷为 Blackwell 做好准备。Blackwell 惊人的推理能力是 Hopper 的 30 倍,有望成为未来生成式 AI 的核心引擎。 能耗是模型训练的关键问题,一台由 8 张 A100 GPU 组成的 DGX 服务器性能强劲但能耗惊人,运行一小时消耗约 6.5 度电,包括散热每小时约消耗 13 度电。若有 1000 台这样的服务器同时运行,每天电费达 20 万元。对于大多数 AI 创业公司,大规模购买和部署 GPU 充满风险和挑战,但云服务平台为 AI 公司提供了灵活选择。 英伟达发布统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽,使得万亿参数模型的实时推理速度比上一代产品提高 15 倍。目前,亚马逊、谷歌、微软已成为最新芯片超算的首批用户,亚马逊网络服务将建立一个拥有 20,000 GB200 芯片的服务器集群。
2024-12-14
现在在国内有想要做这个AI方面的这个创业,我能做一些什么呢?
在国内进行 AI 方面的创业,以下是一些建议: 1. 数据处理方面: 认识到高质量数据处理服务的稀缺性,数据质量对于模型效果至关重要。 避免单纯依赖开源数据,谨慎考虑购买优质数据的投入风险。 2. 模型选择方面: 训练底层世界大模型需要巨大投入,除大厂外对其他公司较困难。 大多数国内公司往往先推出产品,而非集中精力专攻大模型。 3. 创业方向方面: 可以选择“唯快不破”的策略,尽量低成本、高速度地在小赛道中尝试。 例如辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如商品推荐、行程规划等)、监控与预警(如健康监测、安全监控等)、优化与管理(如办公自动化、物流优化等)、销售与交易(如艺术作品生成与销售平台等)等细分领域。 需要注意的是,在这轮 AI 大潮中,新技术加速迭代是常态,不能期望在“技术稳定”时再出手。
2024-12-20
我想用AI完成一个编程项目,帮我从零到一完成一个个人介绍网站,我现在使用vo.dev完成了一个网站,但是不可以供我使用我上传github后再vercel运行发现会出现404请问我该怎么办
很抱歉,暂时没有关于您所描述问题的相关内容。出现 404 错误通常是由于页面未找到导致的。您可以先检查一下以下几个方面: 1. 确认您在 GitHub 上的代码上传是否完整且正确,包括相关的配置文件和依赖项。 2. 检查 Vercel 的部署设置,确保配置正确,例如域名绑定、环境变量等。 3. 查看服务器的日志,以获取更详细的错误信息,从而确定问题的具体原因。 希望这些建议能对您有所帮助,如果问题仍未解决,建议您进一步查阅相关的技术文档或向技术社区寻求帮助。
2024-12-19
现在已经有ai功能的国内app
以下是一些具有 AI 功能的国内 APP: 1. QQ 音乐:拥有 AI 音乐分类器,使用机器学习和音频处理技术,市场规模达数亿美元。能自动分类音乐,方便用户查找和管理,例如按照风格、歌手、年代等分类,用户想听流行音乐时,点击流行音乐分类即可找到相关歌曲。 2. 科沃斯扫地机器人:具备 AI 家居清洁机器人调度系统,运用机器学习和物联网技术,市场规模达数十亿美元。可优化家居清洁机器人的工作安排,提高清洁效率,比如在电量不足时自动返回充电,然后继续未完成的清洁任务。 3. 东方财富 APP:包含 AI 金融风险评估工具,采用数据分析和机器学习技术,市场规模达数十亿美元。能够帮助金融机构评估风险,做出更明智的决策,例如根据股票的历史数据和市场趋势评估股票的风险程度。 4. 马蜂窝 APP:设有 AI 旅游景点解说系统,借助语音识别和自然语言处理技术,市场规模达数亿美元。可为游客提供景点解说服务,丰富旅游体验,比如用户在参观故宫时,APP 可以自动播放故宫的历史介绍和景点讲解。 5. WPS 文档翻译功能:是 AI 办公文档翻译工具,运用自然语言处理技术,市场规模达数亿美元。能够快速翻译办公文档,提高工作效率,例如用户需要将一份中文报告翻译成英文,只需点击翻译按钮,即可快速得到翻译结果。 6. 美丽修行 APP:构建了 AI 美容护肤产品推荐平台,使用数据分析和自然语言处理技术,市场规模达数亿美元。能根据用户肤质推荐适合的美容护肤产品,例如根据用户的油性皮肤,推荐控油、保湿的护肤品。 7. 360 儿童手表:配备 AI 儿童安全监控系统,通过图像识别和机器学习技术,市场规模达数亿美元。可以保障儿童安全,让家长放心,比如当孩子走出安全区域时,手表会自动向家长发送警报。 8. 汽车之家 APP:拥有 AI 汽车保养提醒系统,利用数据分析和机器学习技术,市场规模达数亿美元。能够提醒车主及时进行汽车保养,例如当汽车行驶到一定里程时,APP 会推送保养提醒信息。 9. 智联招聘 APP:设有 AI 招聘筛选工具,运用自然语言处理和机器学习技术,市场规模达数亿美元。可以帮助企业快速筛选简历,提高招聘效率,例如企业招聘程序员,APP 会筛选出有相关技术经验和技能的简历。 10. 贝壳找房 APP:包含 AI 房地产评估系统,采用数据分析和机器学习技术,市场规模达数亿美元。能够准确评估房地产价值,为买卖双方提供参考,比如用户想出售房屋,APP 可以给出一个合理的价格区间。 11. 腾讯游戏助手:具备 AI 游戏角色生成器,借助图像生成和机器学习技术,市场规模达数亿美元。可为游戏开发者生成独特的游戏角色,例如在一款角色扮演游戏中,生成不同外貌、性格和技能的角色,增加游戏的趣味性。 12. 墨迹天气 APP:设有 AI 天气预报助手,运用数据分析和机器学习技术,市场规模达数亿美元。能够提供精准的天气预报和气象预警,例如为用户提供准确的温度、湿度、风力等信息,同时还能提供暴雨、台风等气象预警,帮助用户合理安排出行和生活。
2024-12-19
现在有哪些给非设计师快速构建界面的ai工具
以下是一些可以帮助非设计师快速构建界面的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可自动生成序列图等帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 目前用于产品原型设计的 AIGC 工具包括: 1. UIzard:利用 AI 技术生成用户界面。 2. Figma:基于云的设计工具,提供自动布局和组件库,社区有 AI 插件。 3. Sketch:流行的矢量图形设计工具,插件系统中有利用 AI 技术辅助设计的插件。 在游戏中,从文本提示生成 2D 图像的工具如 Midjourney、Stable Diffusion 和 DallE 2 已广泛应用。生成性 AI 工具在概念艺术方面能帮助非艺术家快速探索概念和想法,一些工作室也尝试用其制作游戏内的生产艺术品。例如,可参考 Albert Bozesan 提供的使用 Stable Diffusion 创建游戏内 2D 资源的教程。
2024-12-19
现在有装修设计相关的大模型吗?
目前有一些与装修设计相关的大模型,以下为您介绍: 常用的模型网站有: Comfyui Kolors 快手文生图大模型: ComfyUIKolorsMZ:https://github.com/MinusZoneAI/ComfyUIKolorsMZ unet 模型放置在 models/unet/文件夹下,下载地址: chatglm3 放置在 models/LLM/文件夹下,下载地址: 使用 ipadapter 时,IPAdapter 节点:https://github.com/cubiq/ComfyUI_IPAdapter_plus 在 Stable Diffusion 中,“ControlNet”有进行室内设计的功能。比如想对房间重新装修,先点开“ControlNet”的状态栏,上传需要设计的房间照片,点击“启用”,预处理器和模型都选“msld”用于计算房屋线条,接着切换一个现实照片的大模型,输入照片质量关键词和照片主体(如一个客厅),最后点击生成,这样出来的照片既保留原来房子的构造,又能看到新的房屋风格。 下载模型后需要将之放置在指定的目录下,不同类型的模型放置位置不同: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 模型的类型可以通过检测。
2024-12-19
现在用AI都可以做什么
AI 的应用场景非常广泛,以下为您列举一些常见的领域和具体应用: 医疗保健领域: 医学影像分析:用于辅助诊断疾病,如分析 X 射线、CT 扫描和 MRI 等医学图像。 药物研发:加速药物研发过程,包括识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 金融服务领域: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构的风险。 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 客户服务:提供 24/7 的客户服务,并回答客户的常见问题。 零售和电子商务领域: 产品推荐:分析客户数据,向每个客户推荐他们可能感兴趣的产品。 搜索和个性化:改善搜索结果并为每个客户提供个性化的购物体验。 动态定价:根据市场需求动态调整产品价格。 聊天机器人:回答客户的问题并解决他们的问题。 制造业领域: 预测性维护:预测机器故障,帮助工厂避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 交通运输领域: 自动驾驶技术:利用图像识别、传感器数据分析和决策制定,实现汽车自主导航和驾驶。 车辆安全系统:增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:根据驾驶员的偏好和习惯来调整车辆设置。 预测性维护:通过分析车辆实时数据,预测潜在故障和维护需求。 生产自动化:在汽车制造过程中,自动化生产线,提高生产效率和质量控制。 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 电动化和能源管理:优化电动汽车电池使用和充电时间,提高能源效率和延长电池寿命。 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 语音助手和车载娱乐:允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-12-18