Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何确保agent按要求调用插件

Answer

要确保 Agent 按要求调用插件,可以参考以下方法:

  1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT-4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。
  2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。
  3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。

例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.如何判断自己的任务/Prompt是否需要拆解为工作流?构建稳定可用的AI Agent是一个需要不断调试和迭代的过程。Agent工程的终极目标是打造出流程尽量简洁、Prompt尽量精炼、生成结果最稳定的智能体。我们通常从当前性能最强的LLM(如ChatGPT-4和Claude 3.5 sonnet)着手,先用单条Prompt或Prompt Chain(可以简单理解为与LLM连续对话,引导LLM逐步完成复杂的任务)来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的LLM,逐步拆解子任务,降低LLM执行单任务的难度,直到达成工程目标。一般而言,对于类似文中这种场景多样、结构复杂、对输出格式要求严格的内容,我们基本可以预见到需要将其拆解为工作流。此外,鉴于LLM只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。2.只用了一段Prompt的Agent,还算AI Agent吗?算。详见[关于LLM、Prompt、Agent的概念理解](https://zkv549gmz8.feishu.cn/wiki/KhXkwqngAitUufkHNUUcPP57nDb?from=from_copylink)

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.如何判断自己的任务/Prompt是否需要拆解为工作流?构建稳定可用的AI Agent是一个需要不断调试和迭代的过程。Agent工程的终极目标是打造出流程尽量简洁、Prompt尽量精炼、生成结果最稳定的智能体。我们通常从当前性能最强的LLM(如ChatGPT-4和Claude 3.5 sonnet)着手,先用单条Prompt或Prompt Chain(可以简单理解为与LLM连续对话,引导LLM逐步完成复杂的任务)来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的LLM,逐步拆解子任务,降低LLM执行单任务的难度,直到达成工程目标。一般而言,对于类似文中这种场景多样、结构复杂、对输出格式要求严格的内容,我们基本可以预见到需要将其拆解为工作流。此外,鉴于LLM只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。2.只用了一段Prompt的Agent,还算AI Agent吗?算。详见[关于LLM、Prompt、Agent的概念理解](https://zkv549gmz8.feishu.cn/wiki/KhXkwqngAitUufkHNUUcPP57nDb?from=from_copylink)

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

实际测试表明,由于LLM的上下文长度有限,通常情况下,一次性输入输出的文本越长,生成时间越长,结果稳定性越低。特别是当对生成结果的格式要求较高时,这个问题更为突出。考虑到对照精读环节,本身就是逐段生成的,非常适合批处理的形式。所以需要用「分段输入正文」,把正文分割后,用LLM节点批处理每一段的对照精读,最终「拼合精读结果」,就能输出完整的文本结果。Tips:如果觉得编写代码脚本繁琐,且仅进行文本处理,也可以考虑使用LLM节点,配合适当的prompt来临时验证整个工作流。[heading3]附2:如何在插件中心,确定需要的插件?[content]先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。附本文插件的搜索过程:1.TTS文字转语音插件:搜索“语音”、“文字转语音”、“TTS”等相关关键词,看到“英文文本转语音”插件,阅读描述后,应该和我们需求相符,遂添加。1.思维导图插件:搜索“脑图”、“树图”、“导图”、“mindmap”等关键词,看到“TreeMind树图”插件,阅读描述后,应该和我们需求相符,遂添加。

Others are asking
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21
ComfyUI中的放大插件
ComfyUI 中的放大插件相关知识如下: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理)。UNet 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。 Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
2025-02-20
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
目前的原型工具ai插件的资讯
以下是关于目前原型工具 AI 插件的资讯: 用于产品原型设计的 AIGC 工具: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发了一些 AI 插件用于增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 AI 音乐相关: 1. LAIVE:利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台,使用者可选择喜欢的类型和情调,上传参考音源,AI 分析生成音乐,还可选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 网页原型图生成工具: 1. 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,每个人都能通过文本或图像生成代码化的用户界面,基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ ,用户友好的 AI 工具,可在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供选择,以及移动优化和集成电子商务功能等功能,通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ ,使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。(内容由 AI 大模型生成,请仔细甄别。)
2025-02-11
coze用什么插件可以生成文档
以下是关于 Coze 生成文档相关的信息: 在 Coze 汽车售后服务知识库 Bot 拆解中,由于文档中需要有时间所以新增了获取时间的插件,生成完内容后还调用了生成文档插件输出下载地址。维修报告提示词、归档文档提示词等在相应流程中使用,归档文档输出完成后同时生成在线文件以及录入数据库。 在 CT:coze 插件通过已有服务 api 创建中,进入 coze 个人空间选择插件,新建插件并命名,在插件的 URL 部分填入 ngrok 随机生成的 https 链接地址,配置输出参数,测试后发布插件。之后可以手捏插件搞定后创建 bot,并将创建的插件接入,在 prompt 里让其调用插件。 此外,关于 Coze 的更多信息: 元子:小白的 Coze 之旅中提到,如果对 AI 常见工具不熟悉可参考相关文章,Coze 上手极其简单、更新特别快、插件比较多,有一键生成思维导图、纯搜索、一键出图等插件和工作流组合。还提到了通过已有服务 api 创建插件的相关内容。
2025-02-10
请告诉我coze里面的doc maker这个插件的使用技巧
以下是关于 Coze 中 Doc Maker 插件的使用技巧: 1. 新建插件: 进入 Coze 个人空间,选择插件,新建一个插件并起个名字,如 api_1,可随意命名,甚至描述也可简单设置为 test。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。如果服务还开着则继续,若已关闭则重新开始。 按照 Coze 的指引配置输出参数,完成后测试并发布插件。 2. 手捏简单 Bot: 完成插件创建后,创建一个测试 api 的 bot,并将自己创建的插件接进来。在 prompt 里面明确要求一定要调用创建的插件。 3. 后续说明: 整体过程仅为说明 Coze 的插件指引好用。若在生产环境中有准备好的 https 的 api,可直接接入。 本案例中使用的是 Coze 国内版,对模型无特殊要求。 Ngrok 在本案例中仅供娱乐,生产环境中勿用。 4. 通过 Coze API 打造强大的微信图片助手: 设置任务的参考提示词,如任务 1 总结图片内容对应【识图小能手】等。 准备好 Glif 的 Token,包括在 Glif 官网注册登录,打开 Token 注册页面等。 打开 Coze 中自定义的插件编辑参数选项,填入准备的 token 并保存,关闭对大模型的可见按钮。 Bot 通过 API 渠道发布更新。若多次尝试不成功,可优化 Coze Bot 中提示词,避免使用违规字词和图片内容。 5. 使用 Coze IDE 创建插件: 登录,在左侧导航栏的工作区区域选择进入指定团队。 在页面顶部进入插件页面或在某一 Bot 的编排页面,找到插件区域并单击+图标,单击创建插件。 在新建插件对话框,完成插件图标、名称、描述、插件工具创建方式、IDE 运行时等配置并单击确认。 在插件详情页,单击在 IDE 中创建工具,在弹出的创建工具对话框设置工具名称和介绍,创建后跳转到 Coze IDE 页面进行编码。 可在 IDE 左上角工具列表区域添加更多工具,在左下角依赖包区域管理依赖包。
2025-02-10
如何让agent协作起来
要让 Agent 协作起来,可以参考以下方法: 1. 了解不同的产品设计模式:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)这 3 种模式,每种模式下人与 AI 的协作流程有所差异。其中 Embedding 模式人类完成大多数工作,Copilot 模式人类和 AI 协同工作,Agents 模式 AI 完成大多数工作。 2. 采用 Multiagent Collaboration 的方法:让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如作为产品经理,可将产品功能设计需求通过 Agents 拆解成多个独立任务,遵循不同工作流,生成初步结果后再修改完善。 3. 从原子能力层思考:抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 4. 重塑获取信息的方式:搜索引擎和基于大模型的聊天机器人的目标从根本上一致,可根据需求选择。 5. 注意多 Agent 模式中的设置:分为全局设置和节点设置。全局设置中更应注意角色定义和人物刻画,节点设置更关注单个智能体中要详细执行的逻辑。 6. 合理编排智能体:将智能体编排首尾相连,避免成为线性工作流。 7. 明确跳转模式和适用场景:单个 Agent 中两种跳转模式分别适用于通用和复杂的意图识别和跳转,一般场景下前者效果更好,后者适用更复杂的意图识别情景。同时,编排时应明确单个 Agent 的名称和适用场景,以便节点跳转模型更好地识别触发条件。
2025-02-19
如何把coze的agent发布到微信公众号上
要把 Coze 的 agent 发布到微信公众号上,您可以按照以下步骤进行操作: 1. 组装和测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入。 将写好的 prompt 粘贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能,如工作流、知识库。 在【预览与调试】模块,直接输入问题,即可与机器人对话。 2. 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮,即可将“AI 前线”发布到微信、飞书等渠道。 3. 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据相关截图,去微信公众号平台找到自己的 App ID,填入确定即可,不用解绑。 4. 体验: 最后去自己的微信公众号消息页面,就可以使用啦。 另外,还有一种方法是在 Coze 发布页面的发布平台的微信客服这里,显示“已配置”后,进行勾选并点击发布。发布成功后,可以点击微信客服旁边的立即对话、复制 Bot 链接,会弹出该微信客服的二维码,扫码即可立即体验。
2025-02-19
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
agent和copilot的区别
Copilot 和 Agent 主要有以下区别: 1. 核心功能: Copilot 更像是辅助驾驶员,依赖人类指导和提示完成任务,功能局限于给定框架内。 Agent 像初级主驾驶,具有更高自主性和决策能力,能根据目标自主规划处理流程并自我迭代调整。 2. 流程决策: Copilot 处理流程依赖人类确定,是静态的,参与更多在局部环节。 Agent 解决问题流程由 AI 自主确定,是动态的,能自行规划任务步骤并根据反馈调整流程。 3. 应用范围: Copilot 主要用于处理简单、特定任务,作为工具或助手存在,需要人类引导监督。 Agent 能够处理复杂、大型任务,并在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot 主要依赖 LLM 性能,开发重点在于 Prompt Engineering。 Agent 同样依赖 LLM 性能,开发重点在于 Flow Engineering,把外围流程和框架系统化。 此外,Agent 具备“决策权”,可自主处理问题,无需确认;Copilot 需要人类确认才能执行任务。业界普遍认为,Copilot 更适合各行业现有软件大厂,而 AI Agent 为创业公司提供了探索空间。
2025-02-18
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
你调用的是哪个大模型?
我调用的是抖音集团的云雀大模型。在一些项目中,还会涉及到其他大模型的调用,比如在 COW 项目中可直接调用千问的某一模型,需更改 key 和 model 等操作,且要实名认证。此外,军师联盟 BOT 工作流中会调用月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言这五个大模型。
2025-02-14
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
我应该如何调用你的知识库并用在本地部署的deepseek上呢
要在本地部署的 DeepSeek 上调用知识库,您可以参考以下步骤: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项包括最大召回数量、最小匹配度和调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 此外,关于 DeepSeek 的提示词相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,参考 。 如何使用: Step1:搜索 www.deepseek.com,点击“开始对话”。 Step2:将装有提示词的代码发给 Deepseek。 Step3:认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定)。 DeepSeekR1 提示词系统的核心原理认知包括: AI 特性定位:多模态理解,支持文本/代码/数学公式混合输入;动态上下文,对话式连续记忆(约 4K tokens 上下文窗口);任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架方面,如果不知道如何表达,还是可以套用框架指令,包括四要素模板和格式控制语法。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧包括思维链引导和知识库调用。思维链引导中的分步标记法为请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问为在得出最终结论前,请先列举三个可能存在的认知偏差。知识库调用包括领域限定指令和文献引用模式。
2025-02-11
请提供deepSeek api的具体调用文档
以下是关于 DeepSeek 的相关信息: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 使用方法: 搜索 www.deepseek.com ,点击“开始对话”。 将装有提示词的代码发给 DeepSeek 。 认真阅读开场白之后,正式开始对话。 特点: 很方便,只需要获得游戏代码即可。 对于新手较为推荐。 相关工具:HiDeepSeek 能让 DeepSeek 的能力更上一层楼,它能让 AI 像人类交流时那样展示思考过程,不是要让 AI 变得更聪明,而是要让其思考过程更易理解。使用时可参考以下步骤: 用 Coze 做小测试进行效果对比。 设计思路包括将 Agent 封装成 Prompt 并储存在文件、通过提示词文件让 DeepSeek 实现联网和深度思考功能、优化输出质量等。 完整提示词版本为 v 1.3 。 特别鸣谢李继刚和 Thinking Claude 等为相关设计提供帮助和灵感。
2025-02-08
你能调用deepseekR1的API吗?
DeepSeekR1 的 API 调用步骤如下: 1. 首先到 DeepSeek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 2. 早期 DeepSeek 有赠送额度,如果没有赠送的余额,可以选择去充值。支持美元和人民币两种结算方式,以及各种个性化的充值方式。 3. 创建一个 API key,注意,API key 只会出现一次,请及时保存下来。 4. 接下来,下载 Cursor(https://www.cursor.com/),或者 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 5. 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 6. 安装完后,打开三角箭头,就可以看到 RooCline,选中并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 7. 最后做完所有不要忘记点击 Done 保存修改。 8. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
给我5个midjourney确保场景一致性的Sample提示词
以下是 5 个 Midjourney 确保场景一致性的 Sample 提示词: 1. Scifi movie scene. In the silverwhite space environment, from the overtheshoulder lens on the right side of the man with short hair and navy blue jumpsuit, a transparent virtual screen appeared on the wall in front of him. Behind there is the silhouette of another female employee with long blue hair, operating another screen. Rendered in a C4D style inspired by Unreal Engine, with high resolution and rich detail. sref url cref url ar 16:9 style raw sw 30 cw 100 2. In a magical forest, a fairy with colorful wings is sitting on a huge mushroom. The sunlight filters through the leaves, creating dappled patterns on the ground. cref https://my.image.host/fairy.jpg s 800 3. On a sandy beach at sunset, a couple is walking hand in hand, leaving footprints in the sand. The ocean waves crash gently in the background. cref https://my.image.host/couple.jpg ar 9:16 4. In a medieval castle courtyard, a knight in shining armor is training with a sword. The flags are fluttering in the wind. cref https://my.image.host/knight.jpg s 700 5. At a busy city street corner, a street musician is playing a guitar, surrounded by a crowd of people. The buildings are towering in the background. cref https://my.image.host/musician.jpg ar 4:3
2025-02-14
使用AI过程中如何确保信息的保密性?
在使用 AI 过程中,确保信息保密性可以从以下几个方面入手: 1. 数据处理环节:将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,针对每个环节优化 AI 性能,同时便于发现和修正问题。 2. 提问方式:对于复杂问题,采用逐步深化和细化的方式提问。先提出宽泛问题,再根据回答进一步细化或深化。 3. 提供学习内容:为 AI 系统提供大量高质量的数据和示例,包括详细的操作指南、行业最佳实践、案例研究等,同时编写详细的流程和知识(knowhow)。 4. 利用专业术语引导:在 Prompt 中使用专业领域术语,如法律术语,引导 AI 回答方向,使其更精准地提供所需信息。 5. 验证与反馈:大模型的语料存在滞后性,使用 AI 回答后要进行交叉验证,确保信息准确性。同时结合自身专业知识进行引导,筛选和判断回答是否符合相关要求。 6. 数据隐私保护: 应通过内置保护措施防止滥用数据,用户对自身数据的使用有决定权。 设计选择应确保默认包含隐私保护,包括确保数据收集符合合理预期,只收集特定情境下严格必要的数据。 系统开发者应寻求用户许可并尊重其关于数据收集、使用、访问、转移和删除的决策,无法做到时应采用替代的隐私保护措施。 同意应仅在能适当和有意义给予的情况下用于证明数据收集的合理性,同意请求应简洁、易懂,并赋予用户对数据收集和使用情境的决定权。 对敏感领域(如健康、工作、教育、刑事司法和金融)的数据和推断应加强保护和限制,对青少年相关数据应优先保护。 应避免不受检查的监视,监视技术应受到加强监督,包括对其潜在危害的预部署评估和范围限制,以保护隐私和公民自由。 7. 政府监管: 要求最强大的 AI 系统开发者向美国政府分享安全测试结果和其他关键信息。 制定标准、工具和测试,以确保 AI 系统安全、可靠和值得信赖。 为防止利用 AI 制造危险生物材料,制定新的生物合成筛选标准。 建立检测 AI 生成内容和验证官方内容的标准和最佳实践,以保护美国人免受 AI 导致的欺诈和欺骗。
2025-01-15
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,丰富的模板库和协作功能简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,擅长多种文体写作,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,提升写作者写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 但请注意内容由 AI 大模型生成,请仔细甄别。
2024-09-23
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 。是智能写作助手,能写心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-23