直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何确保agent按要求调用插件

回答

要确保 Agent 按要求调用插件,可以参考以下方法:

  1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT-4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。
  2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。
  3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。

例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.如何判断自己的任务/Prompt是否需要拆解为工作流?构建稳定可用的AI Agent是一个需要不断调试和迭代的过程。Agent工程的终极目标是打造出流程尽量简洁、Prompt尽量精炼、生成结果最稳定的智能体。我们通常从当前性能最强的LLM(如ChatGPT-4和Claude 3.5 sonnet)着手,先用单条Prompt或Prompt Chain(可以简单理解为与LLM连续对话,引导LLM逐步完成复杂的任务)来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的LLM,逐步拆解子任务,降低LLM执行单任务的难度,直到达成工程目标。一般而言,对于类似文中这种场景多样、结构复杂、对输出格式要求严格的内容,我们基本可以预见到需要将其拆解为工作流。此外,鉴于LLM只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。2.只用了一段Prompt的Agent,还算AI Agent吗?算。详见[关于LLM、Prompt、Agent的概念理解](https://zkv549gmz8.feishu.cn/wiki/KhXkwqngAitUufkHNUUcPP57nDb?from=from_copylink)

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.如何判断自己的任务/Prompt是否需要拆解为工作流?构建稳定可用的AI Agent是一个需要不断调试和迭代的过程。Agent工程的终极目标是打造出流程尽量简洁、Prompt尽量精炼、生成结果最稳定的智能体。我们通常从当前性能最强的LLM(如ChatGPT-4和Claude 3.5 sonnet)着手,先用单条Prompt或Prompt Chain(可以简单理解为与LLM连续对话,引导LLM逐步完成复杂的任务)来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的LLM,逐步拆解子任务,降低LLM执行单任务的难度,直到达成工程目标。一般而言,对于类似文中这种场景多样、结构复杂、对输出格式要求严格的内容,我们基本可以预见到需要将其拆解为工作流。此外,鉴于LLM只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。2.只用了一段Prompt的Agent,还算AI Agent吗?算。详见[关于LLM、Prompt、Agent的概念理解](https://zkv549gmz8.feishu.cn/wiki/KhXkwqngAitUufkHNUUcPP57nDb?from=from_copylink)

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

实际测试表明,由于LLM的上下文长度有限,通常情况下,一次性输入输出的文本越长,生成时间越长,结果稳定性越低。特别是当对生成结果的格式要求较高时,这个问题更为突出。考虑到对照精读环节,本身就是逐段生成的,非常适合批处理的形式。所以需要用「分段输入正文」,把正文分割后,用LLM节点批处理每一段的对照精读,最终「拼合精读结果」,就能输出完整的文本结果。Tips:如果觉得编写代码脚本繁琐,且仅进行文本处理,也可以考虑使用LLM节点,配合适当的prompt来临时验证整个工作流。[heading3]附2:如何在插件中心,确定需要的插件?[content]先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。附本文插件的搜索过程:1.TTS文字转语音插件:搜索“语音”、“文字转语音”、“TTS”等相关关键词,看到“英文文本转语音”插件,阅读描述后,应该和我们需求相符,遂添加。1.思维导图插件:搜索“脑图”、“树图”、“导图”、“mindmap”等关键词,看到“TreeMind树图”插件,阅读描述后,应该和我们需求相符,遂添加。

其他人在问
提示词测试有哪些插件
以下是一些与提示词测试相关的插件: 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT4、AI Agents³进行提示词优化。 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
2024-12-19
如何制作小插件图表工具
以下是制作小插件图表工具的详细步骤: 1. 点击个人空间,选择插件,然后点击创建插件。 插件名称:使用中文,根据插件需求起名。 插件描述:向观众说明插件的用途和使用方法等。 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,选择后需填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 2. 基于已有服务创建插件的配置项: 插件图标:单击默认图标后,可上传本地图片文件作为新的图标。 插件名称:自定义清晰易理解的名称,便于大语言模型搜索与使用插件。 插件描述:记录当前插件的用途。 插件工具创建方式:选择基于已有服务创建。 插件 URL:填写插件的访问地址或相关资源的链接,例如:https://www.example.com/api 。 Header 列表:根据 API 自身的参数配置要求填写 HTTP 请求头参数列表。 3. 创建工具: 填入第一个插件工具的基本信息,工具名称只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以“/”开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。结束后点击保存并继续。 4. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具,填写后选择保存并继续。 以画小二通过 Coze 定制开发插件案例(根据食物识别营养热量)为例: 1. 打开扣子官网:https://www.coze.cn/home ,在个人空间的插件中点击创建插件。 2. 插件基本配置: 选择基于已有的服务创建,起好名字。 插件 URL:https://apis.tianapi.com 。 授权方式选择 Service 。 位置选择:Query 。 Parameter name 参数名字填写 key 。 Service token/API key 填写自己的。 3. 获取 API key:在天聚数行的 API 市场,在数据智能分类中找到实物营养识别,免费白嫖 20 条。登录注册之后按相关提示操作。 4. 插件详细参数配置:参考画小二课程详细解释这里的原理。 5. 插件发布:选择一项,不用收集客户敏感信息。
2024-12-12
写专业论文的插件或者工作流推荐
以下是为您推荐的写专业论文的插件和工作流: 插件方面: 1. 扣子平台上有丰富的插件,可拓展 Bot 能力边界。若不满足需求,还能创建自定义插件集成所需 API。例如,搜索插件可满足最新数据的搜索。 2. 扣子平台上还有如看新闻、规划旅行、提高办公效率、理解图片内容等不同类型的插件,以及能处理多种任务的模型。 工作流方面: 1. 可以根据用户描述生成歌曲后播放的工作流,能试听自己写的歌。 2. 工作流就像可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个小块块(节点)组成,开始和结束都有特定小块块,不同小块块可能需要不同信息才能工作。 3. 例如在“竖起耳朵听”的智能体里,用到了 5 个小块块,可回答带有图片口语的结果。 此外,在论文阅读方面,有“大学教授&学术阅读(读论文)大学教授版本”的 Prompts 分类,遵循「三轮吃透法」进行论文阅读,输出每轮阅读的总结文字。使用方法上,Claude 更好用,可直接上传附件;若用 GPT 则需配合插件,如 PaperChat、ML Paper Reader,直接输入论文地址。
2024-12-09
翻译插件
以下是关于翻译插件的相关信息: 提示词翻译(百度 API): 方法:下载节点压缩包并放在 custom_nodes 文件夹;在百度翻译 Api 登记册开发人员的帐户获取 appid 和 secretKey,百度翻译平台地址:https://fanyiapi.baidu.com/manage/developer ;打开文件 config.py 在记事本或其他编辑工具中,填写 secretKey 并保存文件,重启 Comfy 即可。 提示词翻译(谷歌翻译): 插件地址:https://github.com/kingzcheung/ComfyUI_kkTranslator_nodes ,安装后重启 ComfyUI 即可。将 CLIP 文本编码器转换为输入,连接翻译文本节点即可使用。 如何将一份英文 PDF 完整地翻译成中文: 推荐以下 8 种翻译方法: DeepL(网站): ,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件): ,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」 。 calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件「Ebook Translator」 。 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页): ,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2024-12-08
coze如何写插件
以下是在 coze 中写插件的步骤: 1. 进入 coze 个人空间,选择插件,新建一个插件并起个名字(如 api_1),随意或根据需求命名,同时填写描述(如 test)。 2. 在插件的 URL 部分,填入 ngrok 随机生成的 https 的链接地址。如果服务还开着则继续,否则需重新开始。 3. 按照 coze 的指引配置输出参数,完成后进行测试并发布插件。 4. 手捏插件搞定之后,就可以开始创建 bot。创建一个测试 api 的 bot,并将自己创建的插件接进来,在 prompt 里面让其调用插件。 另外,具体的创建插件步骤还包括: 点击个人空间,选择插件,点击创建插件。 插件名称使用中文,根据需求起名。 填写插件描述,告知其用途和使用方法。 选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具。 填入工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以/开始,若使用 path 方式传参,可用“{}”包裹变量)、请求方法(根据 API 调用方式选择)。 配置输入参数,点击新增参数,填写所有需要使用的参数,填写完成后选择保存并继续。 需要注意的是: 本案例中使用的是 coze 国内版,反正是玩插件,对模型没啥要求。 如果在生产环境中已有准备好的 https 的 api,可直接接上来。 本案例中 ngrok 仅供娱乐,生产环境中勿用。
2024-12-08
怎么将claude做成扣子插件
以下是将 Claude 做成扣子插件的步骤: 1. 公众号私信“TC”获取插件,下载完成后解压。 2. 进入 Chrome 浏览器的扩展程序管理界面,打开右上角的开发者模式。 3. 左上角加载解压完的文件夹。 另外,关于在扣子中手搓插件: 1. 点击个人空间,选择插件,点击创建插件。 插件名称:中文,根据插件需求起名。 插件描述:告诉观众插件的用途和使用方法等。 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,需填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 2. 在新的界面点击创建工具。 填入第一个插件工具的基本信息: 工具名称:只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以“/”开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。 3. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具。 4. 配置输出参数:如果一切都填对了没有问题,可以直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 5. 调试与校验:测试工具是否能正常运行,运行后查看输出结果,“Request”为输入的传参,“Response”为返回值,点击“Response”就可以看到解析后的参数。
2024-12-05
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 相关链接: 1. 2. 3. 4. 5. 6.
2024-12-17
基于知识库做备考AI Agent,我该怎么做
以下是基于知识库为您提供的备考 AI Agent 的建议: 首先,建议您先吃透 prompt,这对于学习 AI Agent 很重要。 在 cost 平台有丰富的教程和比赛,您可以参与其中。 了解到 AI agent 是大语言模型衍生出的智能体,用于解决大模型在处理复杂任务时存在的一些问题,如无法获取最新外部信息、缺少规划、没有记忆能力等。 明天银海老师将详细讲解 AI agent,您可以关注。 此外,知识库中还提到了一些相关的活动和内容,如 prompt battle、AI 神经大赛等,您可以根据自己的兴趣参与。 对于与 AI 会话相关的内容,您可以通过关键词学设进行学习,比如每日选词丢入稳定扩散模型,积累大量提示词,还建有飞书群供感兴趣的同学加入练习。 在 AI 绘画方面,是视觉基础,有针对 AI 绘画学社做的关键词词库精选活动。同时,还收集了 AI 视频类词汇和相关词典,更具象的描述词汇能让模型发挥更好效果。 希望以上内容对您备考 AI Agent 有所帮助。
2024-12-16
怎么做一个搜索ai新闻的agent
要做一个搜索 AI 新闻的 agent,您可以参考以下步骤: 1. 设定 Bot 的人设与回复逻辑。 2. 为 Bot 配置技能: 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 3. 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 4. (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 6. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-12
现在有多少个agent平台
以下是一些常见的 Agent 平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具以拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,随着 AI 的发展,还有一些相关的研究和报告,如生成式 AI 季度数据报告 2024 月 1 3 月中提到的 Agents a16z 图谱等。但需要注意的是,这些平台都有各自的局限性。您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-12-12
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11
如何调用国内coze的api?
以下是调用国内 Coze 的 API 的步骤: 1. 进入 Coze 个人空间,选择插件,新建一个插件,起个名字(如 api_1),连描述都可随意填写(如 test)。 2. 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。如果服务还开着则继续,若已关闭则需重新操作。 3. 按照 Coze 的指引配置输出参数和 message 输出。 4. 测试后发布插件。 5. 手捏插件搞定之后,创建一个测试 api 的 bot,将自己创建的插件接进来,在 prompt 里面让其一定要调用创建的插件。 另外,如果在生产环境中已有准备好的 https 的 api,可直接接上来。需要注意的是,本案例中用的是 coze 国内版,且案例中 Ngrok 仅供娱乐,生产环境中勿用。 此外,还有以下相关接入信息: Glif 接入 Coze:先要创建一个插件,填入插件名、描述,创建方式选择云侧插件,IDE 运行时选择 Python,点击【在 IDE 中创建工具】。创建工具面板里,填入工具名称、介绍。Glif 允许通过 API 调用平台上的应用,去创建一个新的 Token 并复制备用,将自己发布的 glif 链接上的 id 复制备用。在 Coze 的 IDE 中引入依赖和编写 handler 方法,代码中对应的数据字段在元数据 Tab 中设置,左侧的依赖包添加【requests】,填入测试数据运行,测试通过后即可发布。创建一个 Bot,挂载新创建的插件即可,在 Prompt 中做一些对入参的校验和约束,最后测试跑通并发布。 微信相关对接:微信公众号、微信服务号、微信客服均支持与 Coze AI 平台对接。最近 Coze 的国内版正式发布了 API 接口功能,直接对接个人微信甚至微信群成为可能,相关部署方法对接国外版或国内版的 Coze 均适用,但对接国外版 Coze 平台需要部署的服务支持黑魔法。
2024-12-01
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,丰富的模板库和协作功能简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,擅长多种文体写作,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,提升写作者写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 但请注意内容由 AI 大模型生成,请仔细甄别。
2024-09-23
我要修改一个论文文档,要修改的地方已经在文档中标出,我要用哪些AI工具能够快速帮我高效修改论文并确保内容准确。
以下是一些能够帮助您快速高效修改论文并确保内容准确的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 此外,还有一些中文的内容仿写 AI 工具,如: 1. 秘塔写作猫:https://xiezuocat.com/ 。它是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 。是智能写作助手,能写心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 。由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-23