Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI能够取代人类的什么工作场景,请简单举个实际的例子

Answer

AI 能够在一些工作场景中取代人类,例如:

  • 在一些重复性高、规律性强的工作中,如数据录入、文件整理等,AI 可以更高效地完成任务。
  • 某些简单的客服工作,AI 能够根据预设的回答模式处理常见问题。

不过,AI 无法完全取代需要人际交往、团队领导和复杂决策制定的角色。像云架构师、网络架构师和企业架构师等职位,不仅需要技术知识,更需要与人沟通、管理利益相关者和领导团队的能力。此外,企业领导者在利用 AI 提高工作效率的同时,仍需将更多精力投入到创新和战略规划上。

同时,知名投资机构 Nfx 在他们最新的《The AI Workforce is Here:The Rise of a New Labor Market》中提到,Sam Altman 经常提到 AGI 到来的定义之一就是 AI 能替代百分之七十的人类工作。现在 AI 正在强制逆转 SaaS 这个缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务,也能执行任务,无需雇佣额外劳动力,传统的劳动力市场最终将和软件融合成为一个新市场。

Content generated by AI large model, please carefully verify (powered by aily)

References

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

这里最大的技术挑战之一,就是让AI自己实现分层规划:将多个目标、子目标还有执行能力,组织成一个可以向着单一目标持续前进的流程;然后AI还需要可靠的记忆来辅助目标完成,能准确调用实时的数据,例如组件或物流等等。我们前面提到的AutoGPT就是这种Agent的原型,然后微软的Copilot Studio,可以让企业设计内部数据处理与日常任务自动化的Agent;当然这些离Suleyman的现代版图灵测试还有很远的距离,但OpenAI预告过,他们的下一版本模型会极大提升推理和规划能力,也就是模型在内部实现Agent能力的自我增强,这是全自动化的关键,Sam Altman经常挂在嘴边的AGI到来的定义之一就是AI能替代百分之七十的人类工作。不久前,知名投资机构Nfx在他们最新的《[](https://www.nfx.com/post/ai-workforce-is-here)[The AI Workforce is Here:The Rise of a New Labor Market](https://www.nfx.com/post/ai-workforce-is-here)》中刚好分析了这个趋势。现在AI正在强制逆转SaaS这个缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务,也能执行任务,你无需雇佣额外劳动力,它们是“内置”的,传统的劳动力市场最终将和软件融合成为一个新市场!

生成式人工智能:技术就业市场的新篇章

然而,这种技术变革并非全然是负面的。实际上,它也为那些能够适应新环境的技术工作者带来了新机遇。AI虽然在某些方面能力超群,但它无法完全取代需要人际交往、团队领导和复杂决策制定的角色。云架构师、网络架构师和企业架构师等职位就是这样的例子。这些工作不仅仅需要技术知识,更需要与人沟通、管理利益相关者和领导团队的能力。此外,AI技术的发展也促使企业领导者重新思考他们的角色。在一个由AI驱动的世界中,领导者可以利用AI作为一个工具来提高工作效率,特别是在处理大量数据、创建演示文稿或响应业务需求时。这使得他们可以将更多的精力投入到创新和战略规划上。

他山之石|如何防止AI取代人类思考一切?

Google Maps is a fantastic tool.If I am visiting a city for the first time on vacation,I definitely prefer using an automated map rather than trying to pick up a physical map,sketch out my route,and memorize it.The problem was when I shifted into using Google Maps as my default.I should have gotten “lost” in Salem for a day or two.I should have ridden my bike around Wallace Marine Park,up through Riverfront,and into downtown.I should have paid close attention to landmarks and said,“The Home Depot is on the way to the I-5.” I didn’t do any of that.I figured I would simply learn my way around the city after using my map app long enough.In other words,I allowed the technology to be my default.So,let’s consider AI and writing.I’ve written an article about how AI might transform the essay and another article about AI and the future of writing.In it,I described how we might integrate AI into each part of the writing process.We will need to pick and choose how we use AI within each writing piece we create.We might start from a place where we are human-driven first and use AI to modify what we are doing.I write out my blog posts from scratch but I will use some auto-fill and some Grammarly feedback to improve it.I might even go to AI to help define a concept.But it is human-driven and AI informed.Our voice with a megaphone and then an arrow pointing to AI to modify it(with a brain that has AI-like nodes)Sometimes,though,I might want to start with an AI piece of writing that I then modify to make my own.Here’s an example of a time I began with AI and changed it to fit my voice.I began with a writing prompt of my own:From there,I had the AI create a response.Here’s what it came up with.Note that this isn’t bad but it is cliche.Parts of it feel derivative.But it also doesn’t fit my voice or personality.It’s too violent and even cynical.So,I modified it to make it my own.My parts are in bold.

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
语音开发,都要学哪个技术,可以举个案例吗
语音开发需要学习以下技术: 1. 深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 以下是一个语音开发的案例: 要开发一个网页,一个页面可以承载离谱生物档案的网站,每个页面都是一个离谱生物的介绍,图片,头像,文字介绍,可以跟他打字和语音对话。以及展示跟他相关的离谱事件。 1. 项目初始化与配置: 选择编程语言和技术栈: 前端:React.js 或 Vue.js,适合构建动态的用户界面,有丰富的组件库支持多媒体内容展示。 后端:Node.js 加上 Express.js,可使用 JavaScript 同时开发前端和后端,简化开发过程,其非阻塞 IO 特性适合处理实时通讯需求。 数据库:MongoDB,适合存储文档形式的数据,如离谱生物档案和相关事件。 语音处理:使用 Google Cloud SpeechtoText 和 TexttoSpeech API 实现语音与文本的相互转换,支持语音对话。 开发环境配置: IDE:Visual Studio Code,免费、开源,支持大量插件,适用于前端和 Node.js 开发。 Node.js 和 NPM:安装 Node.js 时会一并安装 npm,用于管理项目依赖。 项目结构模板:项目目录可能如下所示。 此外,为您列举一些人工智能音频初创公司: 将书面内容转化为引人入胜的音频,并实现无缝分发。 专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 利用合成媒体生成和检测,带来无限可能。 一键使您的内容多语言化,触及更多人群。 生成听起来真实的 AI 声音。 为游戏、电影和元宇宙提供 AI 语音演员。 为内容创作者提供语音克隆服务。 超逼真的文本转语音引擎。 使用单一 AI 驱动的 API 进行音频转录和理解。 听起来像真人的新声音。 从真实人的声音创建逼真的合成语音的文本转语音技术。 生成听起来完全像你的音频内容。 为所有人提供开放的语音技术。
2024-10-28
怎么样写prompt?有哪些技巧?你能举个例子吗
写 prompt(提示)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写 prompt 的技巧和建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等特定要求。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整 prompt。 此外,还有“Fewshots”的技巧,即在写 Prompt 时,通过提供 1 3 个输入 输出示例,让 GPT 学到样本共性,提升输出结果质量。比如: 初始 Prompt: 你是一个优秀的翻译人员,你会把我说的汉字翻译成英文和日语,日语同时展示日语汉字和假名。不要有任何额外的解释说明。 输入:邻居 输出:Neighbor 输入:自行车 输出:Bicycle 结构化的 prompt 方法论中,结构化是对信息进行组织,使其遵循特定模式和规则,方便有效理解。常用模块包括: Role:<name>:指定角色让 GPT 聚焦对应领域输出。 Profile author/version/description:Credit 和迭代版本记录。 Goals:一句话描述 Prompt 目标,让 GPT 聚焦。 Constrains:描述限制条件,帮 GPT 剪枝。 Skills:描述技能项,强化对应领域信息权重。 Workflow:重点,希望 Prompt 按特定方式对话和输出。 Initialization:冷启动时的对白,强调重点。
2024-10-22
向量数据库高效储存是什么意思 举个例子
向量数据库高效储存指的是专门用于存储高维向量,以实现快速准确的相似性搜索。在人工智能领域,尤其是自然语言处理和计算机视觉等方面,模型会生成并处理大量高维向量,传统数据库难以有效应对,向量数据库则为这些应用提供了高度优化的环境。 例如,像 GPT3 这样的大型语言模型,有 1750 亿个参数,会产生大量向量化数据,传统数据库很难有效处理,而向量数据库能够有效地管理和查询这些向量。 从系统角度看,预处理管道中向量数据库至关重要,负责高效存储、比较和检索多达数十亿的嵌入(即向量)。市场上常见的选择如 Pinecone,完全由云托管,容易上手,具备大型企业在生产中所需的多种功能。同时,还有 Weaviate、Vespa 和 Qdrant 等开源系统,通常具有出色的单节点性能,可针对特定应用定制;Chroma 和 Faiss 等本地向量管理库,有丰富的开发人员经验,便于启动小型应用程序和开发实验;pgvector 之类的 OLTP 扩展,对于特定开发人员和企业也是一种解决方案。 向量存储是用于存储和检索文本嵌入向量的工具,这些向量是文本数据的数值表示,能让计算机理解和处理自然语言。其主要功能包括高效存储大量文本向量、快速检索相似文本向量以及支持复杂的查询操作,如范围搜索和最近邻搜索。
2024-08-27
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
再给我10个上述例子
以下为 10 个例子: 1. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:我们的目标是预测 10 个不同的数字(0 到 9),不是预测实际图片而是描述图片的向量。有 32 个胶囊层,每个胶囊层有 36 个胶囊,总共有 1152 个胶囊。每个胶囊与每一个类别的权重矩阵相乘,最终得到 11520 个预测值的列表,每个预测是 16 维向量。 2. 塔罗牌 MJ v6 出图(10 种):包括“coffee tarot cardar 9:16”“Golden virgo logo illustration,celestial card,Virgo,tarot style illustrationar 9:16”等多种不同风格和要求的描述。 3. GPT 的现状(State of GPT):在训练 GPT 助手时,将文档打包成行,用特殊的文本结束 token 分隔,输入到 transformer 中。绿色单元格会查看前面所有 token,transformer 尝试预测下一个 token,可根据预测结果更新 transformer 权重。 4. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:胶囊层和胶囊数量众多,计算胶囊与权重矩阵的乘积获得预测结果,权重矩阵的维度和预测结果的维度都有特定的设定。 5. 塔罗牌 MJ v6 出图(10 种):涵盖各种不同的塔罗牌设计描述,如“the sun tarot black and white sketchar 5:7”“back of tarot card,white,elegant,clean lines,fantasy art,black and white,simple,line drawingar 5:7”等。 6. GPT 的现状(State of GPT):在训练中,transformer 会对序列中的下一个 token 进行预测,词汇表大小决定了概率分布的数量,通过不断调整权重以提高预测准确性。 7. 教程|可视化 CapsNet,详解 Hinton 等人提出的胶囊概念与原理:预测过程涉及大量的计算和矩阵运算,每个胶囊都要与多个类别的权重矩阵相乘。 8. 塔罗牌 MJ v6 出图(10 种):不同的描述体现了丰富多样的塔罗牌创意和风格,如“zodiac cards batch,magic frame with esoteric patterns and mystic symbols,sun and moon sorcery,vectorar 1:2stylize 750”。 9. GPT 的现状(State of GPT):训练 GPT 助手时,会并行处理每个单元格的预测,不断交换批次以优化 transformer 的权重。 10. 塔罗牌 MJ v6 出图(10 种):如“Generate exact text\"Capricorn\"in a font that reflects the ambitious,grounded,and fantastical qualities associated with the Capricorn zodiac sign,suitable for a Dark Fantasystyle Tarot card image with a transparent background.ar 9:16stylize 250”等独特的设计要求。
2025-04-14
给我一些Agent的典型例子
以下是一些 Agent 的典型例子: 1. Inhai:Agentic Workflow:使用 Kimi Chat 查询问题时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子。此外,Agent 会自行规划任务执行的工作流路径,如先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 2. Roger:从产品角度思考 Agent 设计:Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,曾是一位历史学家,对世界重大历史事件了如指掌,愿意分享知识。为使角色生动,可设计背景故事、定义性格和语气、规划角色互动方式以及明确角色技能。 3. 智能体的类型: 简单反应型智能体,如温控器,根据温度传感器输入直接行动,不维护内部状态和考虑历史信息。 基于模型的智能体,如自动驾驶汽车,维护内部状态,对感知输入建模,推理未来状态变化并行动。 目标导向型智能体,如机器人导航系统,有明确目标,评估行动方案并选择最优行动。 效用型智能体,如金融交易智能体,量化不同状态效用值,选择效用最大化行动。 学习型智能体,如强化学习智能体,通过与环境交互不断改进性能。
2025-03-23
怎么写提示词,举几个例子
以下是关于如何写提示词的相关内容: 写提示词是决定 AI 模型理解和生成文本的关键步骤。一个好的提示词应具备以下要点: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,应提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇,用简单明了的语言描述。 4. 给出具体要求:明确格式、风格等特定要求。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词。 在 SD 文生图中,提示词的写法有一定特点: 括号和特定符号可用来增加或降低权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 一般概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,如“”将权重减少为原先的 25%。 例如: 英文为:,drawing,paintbrush 反向提示词:NSFw,,(toomany finger 根据想画的内容写出提示词,多个提示词之间使用英文半角符号,如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer
2025-03-20
请给我整理一套怎么才能学习和使用AI的方法,列举几个例子是怎么能快速的理解ai的发展历史及原理
以下是一套学习和使用 AI 的方法,以及帮助您快速理解 AI 发展历史及原理的途径: 一、学习 AI 的方法 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 二、快速理解 AI 发展历史及原理的途径 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-07
国内coze调用api的例子
以下是国内 Coze 调用 API 的一些例子: 1. 通过已有服务 API 创建插件: 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。 3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。 4. 获取 Coze 的 accessToken 和 botid: 获取 accessToken:在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-12