直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

普通人想深入学习AI,并获得收入,有哪些可行的方向?

回答

普通人想深入学习 AI 并获得收入,以下是一些可行的方向:

  1. 就业岗位:可以朝着数据科学家、机器学习工程师等岗位努力。掌握 AI 技术后,有机会在这些高薪岗位上工作,获取不错的收入。同时,AI 技术在金融、医疗、制造业等众多行业都有应用,具备相关技能能增加就业机会和职业发展可能。
  2. 新行业领域:技术的发展会开辟新的行业,虽然一些充分发展的行业可能因自动化而减少人力需求,但新领域会需要更多人手。例如,计算的不可约性会使事物变得更复杂,从而产生需要人类参与的“前沿”领域。
  3. 提升自身认知:保持乐观,提升自己的认知,选择处于趋势内的行业。不要在当下选择已经是趋势之外的行业。
  4. 学习路径:
    • 编程基础:掌握 Python、C++ 等编程语言。
    • 机器学习基础:了解监督学习、无监督学习等。
    • 深度学习框架:熟悉 TensorFlow、PyTorch 等。
    • 应用领域:钻研自然语言处理、计算机视觉、推荐系统等。
    • 数据处理:学会数据采集、清洗、特征工程等。
    • 模型部署:掌握模型优化、模型服务等。
    • 行业实践:通过项目实战、案例分析积累经验。

需要注意的是,是否能通过学习 AI 赚钱取决于很多因素,如个人的学习能力、实际应用能力、对市场和商业的理解等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。而且,数学和编程基础在学习过程中必不可少,同时要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

十七问解读生成式人工智能

学了AI有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等。学会了AI技术,可以在这些岗位上找到工作,获得不错的收入。此外,AI技术在各行各业都有应用,比如金融、医疗、制造业等,掌握AI技能可以增加就业机会和职业发展的可能性。然而,是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

充分发展的行业会被完全自动化,现在的AI本质上也是人类经验的自动化回放,因此会雇佣更少的人力;但技术也开辟了新的行业,这些领域需要更多的人手。而且,因为计算的不可约,事物通常会变得越来越复杂,更多的知识和组织结构将会出现,这也就开辟了需要更多人类参与的“前沿”领域。尽管有时会突然涌现出新的技术变革,但在人类职业上出现显著变化通常需要一代人的时间。想象一下你在第二次工业革命的前夕,你能预知所有将在未来半个世纪内出现的神奇技术么?例如大规模生产、电力、汽车、电话、飞机等等。这些技术哪些会扼杀工作机会,哪些又会创造就业机会呢?你一定预测不到!所以请保持乐观,新机会一定存在的;需要做的就是提升自己的认知,不要在当下选择已经是趋势之外的行业就行。最后,如果AI确实抢走了大多数人类的工作机会,那也意味着让部分企业以及某些精英人类赚了更多的钱,政府可以用税收来平衡这个差异,全民基本收入(Universal basic income - UBI)就是一个很好的解决方法。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

其他人在问
AI基础学习课程
以下是为新手提供的 AI 基础学习课程相关内容: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,可尝试使用各种产品创作作品,知识库中有很多实践后的作品和文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,还有以下具体的课程推荐: 【野菩萨】课程:预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。若想免费获得该课程,可参与 video battle,每期冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。 微软 AI 初学者入门课程:包括特定的机器学习云框架,如了解更多详情。深度学习背后的深层数学(Deep Mathematics)可参考 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/上获取。
2024-12-19
AI有哪些技术
AI 技术包括以下方面: 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 如果您想在 AI 领域深入学习,学习路径如下: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在健身领域,以下是一些 AI 产品: Keep:中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。https://keep.com/ Fiture:沸彻魔镜由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练是专门针对健身的生成式人工智能,使用 800 多万条文本数据和 ChatGPT 实时提供指导。https://planfit.ai/
2024-12-19
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
我是一名计算机专业学生,给我一份进入ai行业的指南
以下是为您提供的进入 AI 行业的指南: 一、学习计划 如果您想入门强化学习,可以将搞懂 DQN 算法作为目标。参考链接:https://github.com/ty4z2008/Qix/blob/master/dl.md 。但需注意,其中资料众多,如同大海捞针,所以在学习前要先明确目的。 二、信息源 1. 简报 TLDR AI: The Sequence: Deep Learning Weekly: Ben’s Bites: Last week in ai: Your guide to AI: 2. 播客 No Priors podcast hosted by Sarah Guo 和 Elad Gil Robot Brains Podcast hosted by Pieter Abbeel Lex Fridman Podcast hosted by Lex Fridman The Gradient podcast hosted by Daniel Bashir Generally Intelligent hosted by Kanjun Qiu Last Week in AI 3. 会议 World AI Cannes Festival 三、知识获取 欢迎来到“AI 企业落地应用”专栏,这里会分享 AI 技术在商业场景中的应用案例和经验。为方便不同背景的读者,文章会采用通俗有趣的方式讲解知识,可能存在专业性不严谨的情况,会有标注提示。对于超纲或专业的内容,也会有标注,可放心跳过。文末会有论文推荐导引,帮助您了解技术细节。
2024-12-19
我们普通人如何入门AI
普通人入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,对于普通人直观初接触 AI,有两个方面: 1. 最低成本能直接上手试的工具是什么,自己能否试试。 2. 现在最普遍/最好的工具是什么、能达到什么效果。虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷展示 AI 的能力,让普通人更直观地马上上手,可以选择聊天工具、绘画工具、视频工具、音乐工具等进行体验。
2024-12-18
普通人如何利用AI
普通人利用 AI 可以通过以下方式: 1. 勇于尝试:对于超出自身理解范围的 AI 相关事物,最简单有效的方法就是亲自试一试。学习新东西,实践比听闻更重要。 2. 简单试用:因为 AI 工具强大且功能众多,与普通人之间存在一定的认知障碍。但尽可能简单地试用,能让普通人更快在 AI 的发展中受益。 3. 借助数字克隆体:例如在拍照机位推荐、着装顾问、消磨时光等方面,通过耳机和眼镜等交互工具与数字克隆体交流。可以在不同场景切换不同克隆体,甚至组织克隆体智囊团辅助决策。 4. 考虑付费方式:订阅平台而非单个指定的克隆体,根据月费对应不同的使用时长,克隆体依据训练者定价有不同费率。个人作为数字克隆体的本体,可基于被使用情况与平台结算,受欢迎的克隆体能为本体带来收益,甚至实现“数字克隆体自由”。 总之,AI 不再是少数技术特权阶层盈利的工具,而是每一个普通人都可以掌握、拥有和分享的生活方式。
2024-12-17
AI目前发展到了那一步?普通人可以用AI做什么?怎样开启AI的学习之路?
AI 目前的发展情况较为复杂和多样化。在一些领域,如自然语言处理、图像识别等,已经取得了显著的成果,但仍有很大的发展空间和挑战。 对于普通人来说,利用 AI 可以做很多事情,例如: 1. 内容创作:借助 AI 写作工具生成文章、故事等。 2. 语言学习:使用语言学习类的 AI 应用提高语言能力。 3. 日常交流:通过 AI 聊天机器人获取信息和解答疑问。 如果您想开启 AI 的学习之路,可以参考以下步骤: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧也很重要,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型有助于 AI 理解模式和关系,反映对每个基本元素的理解或预测能力。创建专门从事特定领域如医疗保健的 AI 可能比创建全能 AI 更容易,我们需要特定领域的专家 AI,并让其接触到顶级从业人员的多样化视角,以避免复制危险的偏见。鉴于人工智能依赖的神经网络基础,这些专家 AI 可能通过元学习比我们预期的更快地获得知识,并带着我们人类一同进步。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2024-12-17
普通人可以用IA怎么赚钱
以下是一些普通人利用 AI 赚钱的方式: 1. 技术开发:像独立博客 IAIUSE 主理人一样,将 AI 技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 2. 协助个人:利用 AI 帮助个人重构知识体系,实现个人成长。 3. 医疗领域:在医疗方面,C 端的 AI 陪诊、AI 助理等可以成为获取医疗数据的途径。但短期内,AI 医疗 C 端直接付费较困难,满足 2B/2G 的降本需求是主要模式。更长期来看,AI 有可能提供“人体健康模型”,实现防未病和真正的个性化诊疗。不过,医生使用 AI 助手动力不足,短期内“护士助手”可能更适合国情。
2024-12-05
普通人怎么用AI创收
以下是普通人利用 AI 创收的一些方式: 1. 艺术创作:生成式 AI 可用于内容创作,如通过像 Lensa 这样的产品进行肖像画创作等。从消费者“仅为娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。 2. 数字克隆体:成为数字克隆体的本体,基于自己克隆体的费率以及合计被使用时长,与平台进行结算。越多人使用,获取的收益越多。用户可以通过订阅平台使用多个克隆体,不同的月费对应不同的使用时长,不同的克隆体有不同的费率。 3. 人与 AI 协作创作:积极使用 AI 进行创作,将个人的独特性融入到与 AI 共创的作品中,创造出有价值的作品。例如在麦橘和 waytoagi 风格库社群中进行人肉探索,参与 agent flow 等。
2024-11-30
普通人可以怎么用AI创收
以下是普通人利用 AI 创收的一些方式: 1. 艺术创作:生成式 AI 可用于创作各种艺术作品,如肖像画等。通过创作并销售这些作品,或者利用相关平台实现盈利,例如像在 Lensa 这样的应用中。 2. 内容创作:利用生成式 AI 工具在各种媒介中创作内容,从娱乐性创作到为创作者或个体创业者通过内容实现盈利。 3. 参加 AI 相关的创作活动:例如参加像第一届 AI 艺术节 AIAF 这样的活动,提交作品,展示自己的创作成果,有可能获得收益或提升知名度。 4. 利用 AI 进行跨界创作:即使此前没有相关专业背景,如没有绘画功底或并非从事视觉创作,也能借助 AI 进行创作,并将作品用于商业用途。
2024-11-30
利用ai分析中国股市可行吗?
利用 AI 分析中国股市是可行的。目前已经有一些相关的应用,例如在金融领域,金融风险预警软件利用 AI 分析金融市场数据,包括股市数据,提前预警可能出现的风险,如股市下跌、汇率波动等。但需要注意的是,股市受到众多复杂因素的影响,AI 分析结果仅能作为参考,不能完全依赖。
2024-12-10
我是一个小白,想全面深入的了解AI,需要怎么开始学习
以下是为小白全面深入了解 AI 提供的学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-11
请给我一些优秀的、好用的智能体的“提示词”案例,我想用于学习如何撰写精良的提示词,以及更加深入的使用AI工具
以下是一些优秀的智能体提示词案例和相关学习建议: 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述;根据 Logo 图片的描述和生成意图生成图片提示词;将图片和提示词输入 Comfyui 工作生成。 提示词示例:“The pair of images highlights a logo and its realworld use for a hitech farming equipment; this logo is applied as a black and white tattoo on lower back of an inmate” 学习提示词运用的建议: 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中寻找。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。 活用提示工程工具:如 Anthropic 的 Constitutional AI。 跟上前沿研究:关注最新研究成果和方法论。 相关网站分享: Learn Prompting:https://learnprompting.org/docs/intro AI Short:https://www.aishort.top/en/ AIPRM:https://www.aiprm.com/prompts/ Prompt Library:https://promptlibrary.org/
2024-12-09
我想深入学习智能体相关知识
以下是关于智能体的相关知识: 一、AI Agent 系列介绍 虽然互联网上关于智能体的介绍丰富,但系统性讲解并让读者全面掌握的情况较少。为此开设系列文章,旨在提供全面、系统性学习平台,从基本概念出发,深入到核心技术、应用场景及未来发展趋势,帮助构建完整认知,培养跨学科思维能力,为未来研究和应用打下基础。 二、具身智能 具身智能是人工智能领域的子领域,强调智能体通过与物理世界或虚拟环境直接交互展现智能。智能不仅是处理信息能力,还包括感知环境、自主导航、操作物体、学习和适应环境的能力。其核心在于智能体的“身体”或“形态”,可影响学习和发展,涉及机器人学、认知科学、神经科学和计算机视觉等多学科。 三、智能体的类型 智能体可根据复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前感知输入直接行动,不维护内部状态和考虑历史信息。例如温控器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体:具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体:能通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。
2024-08-28
如何深入领会AI给高等教育模式带来历史性的大变革
AI 给高等教育模式带来的历史性大变革可以从以下几个方面深入领会: 一、面临的挑战 1. 生产力的颠覆性进步促使当前教育体系发生巨大变革,例如以往耗时一小时的编纂单词表工作,AI 可能在 5 10 秒内完成。 2. 未来可能不再教授如用键盘打字等内容,语音互动和脑机接口或成为主流。 3. 大部分人尚未意识到这一代父母和教育者将面临前所未有的挑战,需要重新思考教育的目的、方法、内容和人才筛选标准。 二、存在的问题 1. 当下教育体系存在明显惯性,政策更新滞后,导致教育与技术发展脱节。 2. 技术快速发展与劳动市场需求不匹配,加剧技能差距,影响社会经济结构和个体心理。 3. 全球教育资源分配不均,加剧教育不平等,关系到全球生产力和长远发展。 三、AI 在教育中的应用 1. 个性化学习平台:通过算法和大数据分析,实时跟踪学生学习进度,诊断难点,提供个性化建议和资源,如 Knewton 平台。 2. 自动评估:利用自然语言处理技术自动批改作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 总之,我们正站在新的十字路口,必须找到与 AI 相应的教育模式,期望变革不仅是技术创新,更能推进教育公平、普及和人才培养模式革新,服务于全人类的持续进步与发展。同时,要解决利用 AI 减少教育差距、避免造成新的不平等问题,教育不仅是知识传授,更是激发创新、批判思维和人类价值观的关键领域。
2024-08-07