Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

普通人想深入学习AI,并获得收入,有哪些可行的方向?

Answer

普通人想深入学习 AI 并获得收入,以下是一些可行的方向:

  1. 就业岗位:可以朝着数据科学家、机器学习工程师等岗位努力。掌握 AI 技术后,有机会在这些高薪岗位上工作,获取不错的收入。同时,AI 技术在金融、医疗、制造业等众多行业都有应用,具备相关技能能增加就业机会和职业发展可能。
  2. 新行业领域:技术的发展会开辟新的行业,虽然一些充分发展的行业可能因自动化而减少人力需求,但新领域会需要更多人手。例如,计算的不可约性会使事物变得更复杂,从而产生需要人类参与的“前沿”领域。
  3. 提升自身认知:保持乐观,提升自己的认知,选择处于趋势内的行业。不要在当下选择已经是趋势之外的行业。
  4. 学习路径:
    • 编程基础:掌握 Python、C++ 等编程语言。
    • 机器学习基础:了解监督学习、无监督学习等。
    • 深度学习框架:熟悉 TensorFlow、PyTorch 等。
    • 应用领域:钻研自然语言处理、计算机视觉、推荐系统等。
    • 数据处理:学会数据采集、清洗、特征工程等。
    • 模型部署:掌握模型优化、模型服务等。
    • 行业实践:通过项目实战、案例分析积累经验。

需要注意的是,是否能通过学习 AI 赚钱取决于很多因素,如个人的学习能力、实际应用能力、对市场和商业的理解等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。而且,数学和编程基础在学习过程中必不可少,同时要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

学了AI有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等。学会了AI技术,可以在这些岗位上找到工作,获得不错的收入。此外,AI技术在各行各业都有应用,比如金融、医疗、制造业等,掌握AI技能可以增加就业机会和职业发展的可能性。然而,是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

充分发展的行业会被完全自动化,现在的AI本质上也是人类经验的自动化回放,因此会雇佣更少的人力;但技术也开辟了新的行业,这些领域需要更多的人手。而且,因为计算的不可约,事物通常会变得越来越复杂,更多的知识和组织结构将会出现,这也就开辟了需要更多人类参与的“前沿”领域。尽管有时会突然涌现出新的技术变革,但在人类职业上出现显著变化通常需要一代人的时间。想象一下你在第二次工业革命的前夕,你能预知所有将在未来半个世纪内出现的神奇技术么?例如大规模生产、电力、汽车、电话、飞机等等。这些技术哪些会扼杀工作机会,哪些又会创造就业机会呢?你一定预测不到!所以请保持乐观,新机会一定存在的;需要做的就是提升自己的认知,不要在当下选择已经是趋势之外的行业就行。最后,如果AI确实抢走了大多数人类的工作机会,那也意味着让部分企业以及某些精英人类赚了更多的钱,政府可以用税收来平衡这个差异,全民基本收入(Universal basic income - UBI)就是一个很好的解决方法。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
文生视频的 AI 能力
以下是关于文字生成视频的 AI 能力的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:可在 Stable Diffusion 图片基础上直接生成视频,是 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别) 对于视频模型的评估,可从以下方面全面评估 AI 视频生成模型的各种能力: |测试类型|提示词(Prompt)| ||| |生成质量|“A highresolution 4K video of a sunset over the ocean with smooth transitions.”| |生成速度|“A short 10second clip of a running dog in a park.”| |一致性|“A person walking from left to right across the screen with consistent motion and background.”| |多样性|“A fantasy world with dragons flying in the sky and wizards casting spells.”| |可控性|“Generate a video of a beach scene with a setting sun and seagulls flying,with the ability to change the weather from sunny to cloudy.”| |音频生成|“A video of a thunderstorm with synchronized sound effects of thunder and rain.”| |界面友好度|“Test the user interface by generating a video of a mountain landscape with easytouse controls for adjusting the time of day and weather conditions.”| |可定制性|“Create a video of a city street with customizable options for the number of people,types of vehicles,and time of day.”| |计算资源|“Generate a 30second video of a busy market scene and measure the CPU,GPU,and memory usage.”| |运行成本|“Produce a 2minute educational video on the water cycle,evaluating the cost efficiency for longer videos.”| |错误处理|“Generate a video with an incomplete prompt to test how the model handles missing information.”| OpenAI 发布的首款文生视频模型 Sora 具有强大的能力,不仅能根据文字指令创造逼真且充满想象力的场景,还能生成长达 1 分钟的超长视频,且一镜到底。在视频中的女主角、背景人物等方面都达到了惊人的一致性,各种镜头随意切换,人物保持了神一般的稳定性。相比之下,Runway Gen 2、Pika 等 AI 视频工具在几秒内的连贯性方面还有待突破。
2025-02-05
用户运营AI
以下是关于用户运营 AI 的相关内容: AI 技术的发展对职业形态有巨大影响,但技术进步是不可逆的趋势。对于新媒体运营和用户运营,AI 虽能在某些方面提供帮助,如生成文章和解决单点问题,但在内容创新、创造力、了解人性需求和制定策略方面,人类仍具有优势。 以新媒体运营为例,其核心竞争力在于内容的创新和创造力,AI 生成的文章缺乏创造性和人情味。对于用户运营,AI 能胜任客户服务和解决单点问题,但在了解人性需求变化并制定相应策略上存在难题。 在人工智能时代,我们应重点提升以下能力: 1. 提升提问技巧:在信息泛滥的时代,高质量的问题更重要。提问反映思考方式和能力,通过独立思考,向 ChatGPT 等工具提出优质问题,以获得满意答案。 2. 培养学习方法:面对无尽知识,要提高学习能力和效率,掌握正确的学习方法以事半功倍。 此外,在开源 AI 社区中,可利用社群运营机器人实现知识库问答和定时推送等功能。通过将社区积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定的答案,还能给出延伸阅读链接鼓励用户主动学习。同时,机器人可定时推送活动信息和社区动态,提高通知的准确性和及时性。
2025-02-05
目前用的最多的Ai工具都有哪些
目前使用较多的 AI 工具包括以下几类: 1. 文章润色工具: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,帮助优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 2. 论文写作相关工具: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 3. 适合软件项目经理的工具: 项目管理和任务跟踪工具:如 Jira、Trello 等已开始集成 AI 功能,辅助制定计划、分配任务、跟踪进度等。 文档和协作工具:微软的 Copilot 集成到 Office 套件中,提供 AI 助手功能;云存储服务如 Google Drive 也提供 AI 驱动的文档管理和协作功能。 风险管理和决策支持工具:帮助识别和分析项目风险,并提供决策建议。 沟通和协作工具:AI 助手辅助进行团队沟通协调、客户关系维护等。 创意生成工具:如文心一格、Vega AI 等,帮助快速生成创意图像素材。
2025-02-05
我应该如何使用ai agent
使用 AI Agent 可以从以下几个方面入手: 1. 理解工具:AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,可通过描述工具功能和参数的 zeroshot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,应先将其分解为子任务,再组织和协调,这依赖于 LLM 的推理和规划能力。 2. 使用工具:AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习。这包括模仿人类专家行为,了解行为后果,并根据环境和人类的反馈(如行动是否成功完成任务的结果反馈、环境状态变化的中间反馈、显性评价和隐性行为)做出调整。 3. 具身智能:在追求 AGI 的过程中,具身 Agent 成为核心研究范式,强调智能系统与物理世界紧密结合。与传统深度学习模型不同,LLMbased Agent 能主动感知和理解物理环境并互动,利用内部知识库进行决策和行动,改变环境。 此外,目前有不少大厂推出了 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。以扣子为例,它是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否有编程基础,都能在该平台上迅速构建各类问答 Bot,开发完成后还可发布到社交平台和通讯软件上。创建智能体通常可通过简单 3 步:起名称、写介绍、用 AI 创建头像。
2025-02-05
植物提取物销售人员如何使用ai提高销量
对于植物提取物销售人员来说,可以借鉴以下利用 AI 提高销量的方法: 1. 利用 AI 分析市场数据:通过 AI 工具收集和分析市场趋势、客户需求以及竞争对手的信息,以便更精准地定位目标客户和优化产品策略。 2. 借助 AI 优化销售文案:利用 AI 的语言处理能力,生成更有吸引力和说服力的产品描述、广告文案等,提高产品页面的吸引力。 3. 运用 AI 进行客户关系管理:通过 AI 预测客户行为和需求,提供个性化的服务和推荐,增强客户满意度和忠诚度。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-05
原料类产品的营销人员如何使用ai开发客户
以下是一些原料类产品的营销人员可以借鉴的利用 AI 开发客户的方式: 1. 图像生成工具应用:像 DALLE 2 这样的图像生成工具已经在广告领域得到应用。例如,亨氏使用番茄酱瓶的图像和类似标签来展示“这就是人工智能眼中‘番茄酱’的样子”,这意味着模型接受了大量相关照片的训练。雀巢使用维米尔画作的人工智能增强版帮助销售酸奶品牌,美泰使用该技术生成玩具设计和营销的图像。 2. 服装推荐与可视化:如 Stitch Fix 这样的服装公司,使用 AI 向客户推荐特定服装,并尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。原料类产品的营销人员可以思考如何将类似的理念应用到自身产品的展示和推荐中,以吸引客户。
2025-02-05
到目前为止,人工只能已经发展到什么样的一个程度了,未来前景怎么样?普通人如何通过人工智能挣到钱
目前人工智能的发展呈现出复杂的态势: 预计明年会有团体花费超过 10 亿美元训练单个大规模模型,通用人工智能的热潮仍在持续,但其成本也在不断增加。 政府和大型科技公司都面临着计算需求超出电网支持能力的问题。 人工智能对选举的影响尚未完全显现,但仍需关注。 以 OpenAI、Meta 以及中国实验室为代表,竞争激烈。 未来前景方面: 深度学习被证明有效,且随着规模扩大预期会改善,能帮助解决更多难题,对全球人民生活产生有意义的改善。 人工智能模型将作为个人助理执行特定任务,帮助构建更好的下一代系统,并推动各领域科学进展。 对于普通人如何通过人工智能挣钱,以下是一些可能的途径: 学习相关技能,如编程、数据分析等,参与人工智能项目的开发和维护。 利用人工智能工具进行内容创作,如写作、绘画等,并通过相关平台实现盈利。 关注人工智能领域的新兴应用,寻找创业机会。
2025-02-05
普通人需要掌握哪些才能利用ai变现
普通人利用 AI 变现可以考虑以下几个方面: 1. 数字克隆体:成为数字克隆体的本体,基于自己克隆体的费率以及被使用时长与平台结算获取收益。用户可以通过耳机和眼镜等交互工具与数字克隆体交流,还可以组织克隆体智囊团,付费方式可以是订阅平台,不同月费对应不同使用时长,不同克隆体有不同的费率。 2. Zion + coze:将发布的 coze 制作成独立网页,通过使用次数或包月等方式收费。例如,可以用 Zion 来做小程序。 需要注意的是,虽然 AI 具有强大的智力和效率,但在利用其变现的过程中,要充分考虑用户需求和市场情况。
2025-02-01
普通人ai知识怎么学
以下是为普通人学习 AI 知识提供的一些建议: 1. 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,AI 会给出知识框架,然后针对每个小点继续提问,能帮助您深度思考。 2. 优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 4. 零基础小白学习: 网上有很多基础课程,可找科普类教程学习。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。
2025-01-25
普通人如何熟练的使用Ai
普通人要熟练使用 AI ,可以参考以下几点: 1. 提供背景信息:在使用 AI 时,尽可能为其提供详细的背景信息,以确保输出更准确和有用。 2. 让 AI 自我反思:促使 AI 对每次输出的内容进行再次思考,提高输出质量。 3. 尝试使用:对于超出自己理解范围的 AI ,最简单的方法是亲自试一试,百闻不如一练。 4. 了解 AI 能力边界:虽然目前难以明确类似 GPT4 等模型的具体能力边界,但要心中有数,避免在边界外的任务上过度依赖。 5. 接受培训:使用 AI 时接受一定的培训,能提高任务完成的效率和质量。 6. 注意协作方式:可以采用“半人马”模式,即人与 AI 紧密结合但各司其职,人类主导流程并合理调配资源;也可以向“机械人”模式发展,实现人与 AI 的高度融合,更精细化地协作和创作。 此外,尽可能简单地试用 AI ,是让普通人在 AI 发展中更快受益的好方式。
2025-01-15
AI对于普通人的具体意义是什么?
AI 对于普通人具有多方面的重要意义: 1. 工作效率提升:能处理重复性和繁琐的日常任务,例如编写程序或脚本。 2. 创新解决方案:开启无限可能性,从自动化日常任务到创造创新性成果。 3. 融入工作生活:一定程度上缓解工作中的交互问题,融入日常工作场景。 4. 减轻劳动负担:将人从重复性劳动中抽离,节省时间和精力。 5. 个性化服务:如为小朋友制作游戏或智能硬件,创造独特体验。 6. 医疗领域:在初诊、获取医疗数据、降本等方面发挥作用,提供“人体健康模型”的可能性。 同时,AI 应用是技术驱动的,目前产品能做的事情还较有限。在一些领域,如医疗,短期内仍存在一些问题,如医生使用 AI 助手动力不足等。但从长远来看,AI 有着广阔的发展空间和想象空间。
2025-01-15
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
AI可行性评估报告
以下是为您提供的关于 AI 可行性评估报告的相关内容: 一、关于 AI 责任和新技术的提案 1. 该提案建立在 4 年的分析和利益相关者(包括学者、企业、消费者协会、成员国和公民)的密切参与基础上。 2. 准备工作始于 2018 年,成立了责任和新技术专家组。专家组于 2019 年 11 月发布报告,评估了 AI 的某些特征对国家民事责任规则构成的挑战。 3. 专家组报告的输入得到了三项额外外部研究的补充: 基于欧洲侵权法对关键 AI 相关问题的比较法律研究。 关于责任制度有针对性调整对消费者决策(特别是他们对采用 AI 支持的产品和服务的信任和意愿)影响的行为经济学研究。 涵盖一系列问题的经济研究,包括 AI 应用的受害者与非 AI 设备的受害者在试图获得损失赔偿时面临的挑战;企业对当前责任规则在其涉及 AI 的业务中的应用是否不确定以及不确定程度;法律不确定性的影响是否会阻碍对 AI 的投资;国家责任法的进一步碎片化是否会降低 AI 应用和服务的内部市场的有效性,以及通过欧盟立法协调国家民事责任的某些方面是否会减少这些问题并促进欧盟公司对 AI 技术的总体采用。 二、AI 相关的其他内容 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,可使用“退后一步”提示词,让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势是避免错误方向的持续生成,促使模型输出新的思考过程。但如果模型输出内容已过于冗杂,建议修改原始提示词。 2. AI 对程序员工作的影响分析:AI 可代替代码生成、补全、分析问题和数据提取、辅助架构设计文档等部分;无法代替需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。专业程序员可通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。 3. AI 应用场景:可从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。适合验证新闻、访谈或声明的真实性,发现潜在问题。 三、关于 AI 的创新方法 1. 政府已通过发布相关内容支持工具的开发。 2. 提出关于非监管工具对组织嵌入可信 AI 的帮助。 3. 包括长期规划,如交付确保框架有效的核心功能的首次迭代、与关键监管机构合作、发布草案咨询、开发监管沙盒或试验台、发布监测和评估报告、更新 AI 监管路线图等。
2025-01-22
利用ai分析中国股市可行吗?
利用 AI 分析中国股市是可行的。目前已经有一些相关的应用,例如在金融领域,金融风险预警软件利用 AI 分析金融市场数据,包括股市数据,提前预警可能出现的风险,如股市下跌、汇率波动等。但需要注意的是,股市受到众多复杂因素的影响,AI 分析结果仅能作为参考,不能完全依赖。
2024-12-10
我是一个AI小白,我希望能通过不断了解AI为我的工作和生活提效,请为我量身定制逐步深入的AI学习计划
以下是为您量身定制的逐步深入的 AI 学习计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,进行实践以巩固知识,尝试使用各种产品做出自己的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、如果希望继续精进 1. 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其之间的关系)、历史发展(简要回顾 AI 的发展历程和重要里程碑)。 2. 掌握数学基础,包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等线性代数基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 3. 学习算法和模型,如监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 4. 学会评估和调优,包括性能评估(了解如何评估模型性能,包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 5. 掌握神经网络基础,包括网络结构(理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN))、激活函数(了解常用的激活函数,如 ReLU、Sigmoid、Tanh)。 七、学习模式和注意事项 1. 您可以参考《雪梅 May 的 AI 学习日记》,如果您是纯 AI 小白,可以先看左边的目录。学习模式可以是输入→模仿→自发创造。 2. 注意学习内容可能会更新,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 3. 学习时间可以灵活安排,不必每天依次进行,有空的时候学习即可。 4. 本学习计划中的学习资源大多是免费开源的。
2024-12-30
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
我是一个小白,想全面深入的了解AI,需要怎么开始学习
以下是为小白全面深入了解 AI 提供的学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-11
请给我一些优秀的、好用的智能体的“提示词”案例,我想用于学习如何撰写精良的提示词,以及更加深入的使用AI工具
以下是一些优秀的智能体提示词案例和相关学习建议: 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述;根据 Logo 图片的描述和生成意图生成图片提示词;将图片和提示词输入 Comfyui 工作生成。 提示词示例:“The pair of images highlights a logo and its realworld use for a hitech farming equipment; this logo is applied as a black and white tattoo on lower back of an inmate” 学习提示词运用的建议: 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中寻找。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。 活用提示工程工具:如 Anthropic 的 Constitutional AI。 跟上前沿研究:关注最新研究成果和方法论。 相关网站分享: Learn Prompting:https://learnprompting.org/docs/intro AI Short:https://www.aishort.top/en/ AIPRM:https://www.aiprm.com/prompts/ Prompt Library:https://promptlibrary.org/
2024-12-09
我想深入学习智能体相关知识
以下是关于智能体的相关知识: 一、AI Agent 系列介绍 虽然互联网上关于智能体的介绍丰富,但系统性讲解并让读者全面掌握的情况较少。为此开设系列文章,旨在提供全面、系统性学习平台,从基本概念出发,深入到核心技术、应用场景及未来发展趋势,帮助构建完整认知,培养跨学科思维能力,为未来研究和应用打下基础。 二、具身智能 具身智能是人工智能领域的子领域,强调智能体通过与物理世界或虚拟环境直接交互展现智能。智能不仅是处理信息能力,还包括感知环境、自主导航、操作物体、学习和适应环境的能力。其核心在于智能体的“身体”或“形态”,可影响学习和发展,涉及机器人学、认知科学、神经科学和计算机视觉等多学科。 三、智能体的类型 智能体可根据复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前感知输入直接行动,不维护内部状态和考虑历史信息。例如温控器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体:具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体:能通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。
2024-08-28