Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想深入学习智能体相关知识

Answer

以下是关于智能体的相关知识:

一、AI Agent 系列介绍 虽然互联网上关于智能体的介绍丰富,但系统性讲解并让读者全面掌握的情况较少。为此开设系列文章,旨在提供全面、系统性学习平台,从基本概念出发,深入到核心技术、应用场景及未来发展趋势,帮助构建完整认知,培养跨学科思维能力,为未来研究和应用打下基础。

二、具身智能 具身智能是人工智能领域的子领域,强调智能体通过与物理世界或虚拟环境直接交互展现智能。智能不仅是处理信息能力,还包括感知环境、自主导航、操作物体、学习和适应环境的能力。其核心在于智能体的“身体”或“形态”,可影响学习和发展,涉及机器人学、认知科学、神经科学和计算机视觉等多学科。

三、智能体的类型 智能体可根据复杂性和功能分为以下几种类型:

  1. 简单反应型智能体:根据当前感知输入直接行动,不维护内部状态和考虑历史信息。例如温控器。
  2. 基于模型的智能体:维护内部状态,对当前和历史感知输入建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。
  3. 目标导向型智能体:具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。
  4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。
  5. 学习型智能体:能通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI Agent系列(二):Brain模块探究

虽然互联网上关于智能体的介绍已经相当丰富,但能够系统性地讲解智能体,并让读者在一系列文章中全面掌握智能体的知识,这种情况实属罕见。为此,我们特别开设了这个系列文章,旨在帮助大家系统性地了解智能体,并从中学习跨学科、跨领域的人工智能知识。我们深知,系统性学习智能体并非易事,它需要跨越多个学科领域并涉及广泛的知识体系。因此,我们希望通过这个系列文章,为大家提供一个全面、系统性的学习平台,帮助大家构建起对智能体的完整认知。在这个系列中,我们将从智能体的基本概念出发,逐步深入到其核心技术、应用场景以及未来发展趋势。我们期望,通过系统性的学习,大家不仅能够掌握智能体的基本知识,还能培养跨学科的思维能力,为未来的人工智能研究和应用打下坚实的基础。

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。1.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。1.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。1.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。1.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

Others are asking
COZE创建智能体
以下是在 COZE 创建智能体的步骤: 1. 基础智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕。 通过【标准创建】填入 bot 的基本信息。 2. Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流用于处理和生成图像的相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料;表格用于结构化数据的存储和调用;照片作为图像素材库。 记忆系统:变量存储对话过程中的临时信息;数据库管理持久化的结构化数据;长期记忆保存重要的历史对话信息;文件盒子管理各类文档资料。 交互优化(底部区域):设置开场白、用户问题建议、快捷指令、背景图片。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 3. 具体创建示例: 打开扣子官网(https://www.coze.cn/)。 “画小二智能小助手”Coze 商店体验地址:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00 。 点击创建 Bot,在对话框中工作空间选择“个人空间”,命名为画小二智能小助手。 设置画小二助手的提示词。 动手实践: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流:点击创建一个新的对话流(记得要和智能体关联)。 测试:找到一篇小红书笔记,试运行对话流,直接在对话窗口输入地址,当看到数据即为成功。回到智能体的编排页面,同样方式测试,确保对话流执行成功。 发布:点发布后,只选择多维表格,然后点配置。输出类型选文本,输入类型选字段选择器。完善上架信息,填个表格,选发布范围时,可选仅自己可用以加快审核。提交上架信息后,返回配置界面显示已完成,即可完成最终提交。
2025-03-08
学习人工智能,小白应该从哪学起?
对于小白学习人工智能,建议从以下几个方面入手: 1. 了解 AI 基本概念:首先,阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 另外,您可以参考《雪梅 May 的 AI 学习日记》,其中提到适合纯 AI 小白的学习模式是输入→模仿→自发创造。同时要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-08
如何调试智能体回答问题准确率
调试智能体回答问题准确率可以参考以下方法: 1. 从问题场景出发:明确活动为问答对话场景,考验智能体对问题的理解和准确回答能力,真实对话场景中一般以完整句子回复。 2. 具体交流技巧:与大语言模型交流时尽量具体、丰富、少歧义,多说有用的信息。 3. 测试方法:可使用弱智吧问题对 LLM 进行测试,评价提示词的生成效果。 4. 行业案例参考: 服务和业务助手:关注回答准确率、数据覆盖范围,具备丰富的文档/多媒体/数据库支持、多数据源打通、文档 Meta 信息增强、搜索过滤、大模型召回判定等功能。 个人助理:关注回答准确率、业务数据关联性、人设契合度、多模态,通过 Prompt 优化、多模态数据上传、互联网搜索、音频/视频交互等方式提升。 多模态文件交互和数据处理:关注成本、延迟、多场景适配度,可进行自定义文件解析设置、视觉解析增强、企业级数据管理。 例如在服务和业务助手方面,内部业务助手可使用企业内部规章制度等构建知识库进行内部知识问答,通过复杂文档解析视觉增强来提供更好的文档理解。在医疗助手/法律助手/智能导购等场景,构建领域内知识库,结合规则性和智能性进行相似度阈值判定和大模型智能分析,减少数据混淆和模型幻觉问题,但判定速度略慢且有额外大模型调用费用,适合高度定制化和智能化搜索服务场景。
2025-03-08
具身智能软硬件解决方案。
具身智能的软硬件解决方案包括以下方面: 算法层: 技术层级: 任务层级:可细分为任务级、技能级、动作级、基元级、伺服级,通常关注前四个级别。 解决方案层级:通常可拆分为大脑+小脑两个层级。大脑负责人机交互与规划决策,小脑负责运动控制及将语义信息理解转化为动作。 大脑侧:负责人机交互,能通过视觉在语义层面理解场景、任务等并进行决策。大模型的发展对大脑有促进作用,大脑的长期发展高度依赖多模态大模型。如 2024 年 3 月,有鹿机器人发布了基于 LPLM10B 的软硬件结合产品 Master 2000。 整机硬件方案:基于下游场景需求设计运动、感知、计算和通信硬件方案。具身智能厂商倾向于软硬件全流程自主控制,自己制作机体,原因包括机体和数据模式未统一,训练数据与机体构造紧密联系,以及考虑二级供应商是否成熟和整机利润。部分强大厂商如 Tesla 具备制作更底层电机、传感器的能力,软硬件一体化制造能带来更高利润。 智能类型:包括认知智能和物理智能。认知智能涉及思考、规划和决策能力,完全由大脑驱动;物理智能指机器人的感知和与环境的运动互动能力,感知环节由大脑侧算法实现,行动环节由小脑侧算法和硬件配合完成。 发展趋势: 人形化:外形向人类细部特征靠拢,功能具备真实人类运动、灵活和环境判断能力。 成本下降显著:核心零部件成本降低,人形机器人成本及售价呈下降趋势。 构成元素:包括大脑(意图理解、环境感知、规划决策)、小脑(运动控制、语义信息理解转化为动作)、整机硬件方案。
2025-03-07
人工智能赋能玩具行业
以下是关于人工智能赋能玩具行业的相关内容: 2025 年 1 月 2 日,“威震天”变形金刚凭借先进的自动变形技术和高达 1700 美元的售价迅速售罄,反映出玩具行业通过 AI 和机器人技术实现创新,推动市场向情感消费转型。预计到 2025 年,AI 驱动的玩具将占全球市场 15%以上,智能玩具的拟人化特征将提升互动体验,吸引更多成年消费者。 有创业公司聚焦于陪伴 3 6 岁孩子成长的 AI Friends 场景,推出 AI 毛绒玩具。这类玩具能与孩子多轮对话、用 IP 角色的音色交流,非常自然。孩子们会把玩具当作有生命、会说话的,且对其不感到惊讶。目前大模型能力尚不足以成为成年人日常的 AI 助手,儿童陪伴场景用户容忍度更高,且 AI 毛绒玩具定价几百元,客单价低于家庭机器人,几乎没有市场教育成本。近年来,毛绒玩具市场快速增长,中国玩具品牌分散,全球销量前十的毛绒玩具里没有中国品牌。 在独立游戏《玩具帝国》开发中,人机 AI 采用 Unity 的 ml agent,通过强化学习训练能够进行长周期复杂决策。由于游戏是离线模式且对决策实时性和本地 AI 运行性能有要求,未选用调用 ChatGPT 之类的线上接口。通过“即时奖励”和“预测奖励”进行长周期决策 AI 的训练,数学模型可调,AI 可控。为让输入向量等长,对场上道路进行分块统计数值。先训练掌握基本规则的底模,再做分支训练得到适用于不同文明策略的模型。为避免过拟合,对初始条件和每次决策时的可选项进行随机处理。
2025-03-07
创建自己的智能体
创建自己的智能体可以参考以下步骤: 1. 输入人设等信息,放上创建的工作流。配置完成后进行测试。需要注意的是,工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token 时,为避免他人调用消耗您的费用,不能直接发布。您可以将 api_token 作为工作流最开始的输入,让用户购买后自行输入再发布。 2. 第一步创建智能体,使用单 Agent 对话流模式。 编排对话流:点击创建新的对话流(记得要和智能体关联)。 注意事项:两个小红书插件可在插件市场找到,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT。之后使用代码节点进行数据处理,注意代码节点输出的配置格式。 测试:找到一篇小红书笔记,试运行对话流,直接在对话窗口输入地址,看到数据即为成功。回到智能体的编排页面同样进行测试,确保对话流执行成功。 发布:点击发布后,只选择多维表格,然后进行配置。输出类型选文本,输入类型选字段选择器。完善上架信息,填写表格,选发布范围时可选仅自己可用以加快审核。提交上架信息后返回配置界面显示已完成,即可完成最终提交。 3. 扣子智能体的创建相对简单,首先想一个智能体的名字,然后写一段详细的介绍,越详细越好,因为它会根据介绍智能生成符合主题的图标,最后点击确认即可。 扣子是字节跳动旗下的 AI 应用开发平台,开发智能体的门槛低,无论有无编程基础都能快速搭建基于 AI 模型的多样化问答 Bot,还提供丰富的插件、工作流、知识库等功能增强 Bot 的能力和交互性。例如菠萝作词家智能体,是专为音乐创作设计的辅助工具,能帮助音乐人等生成高质量歌词。
2025-03-07
我是一个小白,但是想学习AI相关的知识,你有什么推荐吗,我需要注意什么,有什么技术学习路线
对于想学习 AI 的小白,以下是一些推荐和需要注意的方面,以及技术学习路线: 一、基础知识 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 数学基础 学习线性代数、概率论、优化理论等。 3. 编程基础 掌握 Python、C++等编程语言。 二、学习路径 1. 偏向技术研究方向 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 三、深入学习和实践 1. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 2. 实践和尝试 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 3. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
本地部署deep seek后如何搭建个人知识库,详细说明一下每个步骤
以下是本地部署 Deep Seek 后搭建个人知识库的详细步骤: 1. 在 RAGFlow 中配置 Deep Seek 模型 返回 RAGFlow ,打开右上角设置,进入模型提供商界面。 配置本地部署的 Deep Seek 模型,选择 Ollama ,并根据运行的模型配置相关信息。 设置基础 URL 。 点击确定。 2. 导入嵌入模型 导入一个用于文本向量化的嵌入模型。 3. 设置系统模型设置 4. 创建知识库 返回知识库,进入数据集,导入文件或设置文件夹当作知识库。 5. 文件解析 对导入的文件进行解析,解析速度取决于本机 GPU 性能(显卡性能),越好的显卡解析越快。 6. 检索测试 解析完成后,进行检索测试。 7. 进入聊天界面 测试没问题后,可进入聊天界面,助理设置可自行进行。 此外,如果想要对知识库进行更灵活的掌控,可以使用 AnythingLLM 软件,步骤如下: 1. 安装 AnythingLLM ,安装地址:https://useanything.com/download 。 2. 安装完成后进入配置页面,主要分为三步: 选择大模型。 选择文本嵌入模型。 选择向量数据库。 3. 构建本地知识库 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 4. 测试对话 完成上述配置后,即可与大模型进行对话。 在进行本地知识库搭建实操之前,还需要对 RAG 有大概的了解: RAG 是一种检索增强生成技术,应用过程包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。文本加载器用于将用户提供的文本加载到内存中以便后续处理。
2025-03-07
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
如何在Kimi创建我的个人知识库
以下是在 Kimi 创建个人知识库的相关信息: 使用 GPT 打造个人知识库: 由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量并保存。 当用户提问时,将问题也转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示。 常见的向量距离计算方式是欧几里得距离。 使用 Coze 创建个人知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式(目前支持文档、表格、图片)并填写信息。 可选择本地文档或问答对表格,还能进行自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-03-07
知识库如何建立如何使用
以下是关于知识库建立和使用的详细信息: 创建知识库: 上传表格数据: API 方式: 1. 在表格格式页签下,选择 API,然后单击下一步。 2. 单击新增 API。 3. 输入网址 URL 并选择数据的更新频率,然后单击下一步。 4. 输入单元名称或使用自动添加的名称,然后单击下一步。 5. 配置数据表信息,包括确认表结构(可自定义修改列名或删除某一列名,指定语义匹配字段),查看表结构和数据,确认无误后单击下一步。 6. 完成上传后,单击确定。 自定义方式: 1. 在表格格式页面下,选择自定义,然后单击下一步。 2. 输入单元名称。 3. 在表结构区域添加字段,单击增加字段添加多个字段。 4. 设置列名,并选择指定列字段作为搜索匹配的语义字段。 5. 单击确定。 6. 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 上传文本内容: Notion 方式: 1. 在文本格式页签下,选择 Notion,然后单击下一步。 2. 单击授权。首次导入 Notion 数据和页面时,需要进行授权。在弹出的页面完成登录,并选择要导入的页面。 3. 选择要导入的数据,然后单击下一步。 4. 选择内容分段方式(自动分段与清洗或自定义)。自动分段与清洗时,系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据;自定义时,可手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则(替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。 5. 单击下一步完成内容上传和分片。 自定义方式: 1. 在文本格式页签下,选择自定义,然后单击下一步。 2. 输入单元名称,然后单击确认。 3. 单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。 4. 单击保存。 使用知识库:扣子的知识库功能提供了简单易用的方式来存储和管理外部数据,让 Bot 可以与指定的数据进行交互。将数据上传到知识库后,扣子会自动将文档分割成一个个内容片段进行存储,并通过向量搜索来检索最相关的内容来回答用户问题。知识库由大到小可分为:知识库(一整套领域知识,是 Bot 加载的最小单位)、单元(知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页)、分段(一个单元切分成多个分段,模型查询的最小单位。分段内容的完整度和准确性度会影响模型回答问题的准确性)。
2025-03-07
我是一个AI小白,我希望能通过不断了解AI为我的工作和生活提效,请为我量身定制逐步深入的AI学习计划
以下是为您量身定制的逐步深入的 AI 学习计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,进行实践以巩固知识,尝试使用各种产品做出自己的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、如果希望继续精进 1. 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其之间的关系)、历史发展(简要回顾 AI 的发展历程和重要里程碑)。 2. 掌握数学基础,包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等线性代数基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 3. 学习算法和模型,如监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 4. 学会评估和调优,包括性能评估(了解如何评估模型性能,包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 5. 掌握神经网络基础,包括网络结构(理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN))、激活函数(了解常用的激活函数,如 ReLU、Sigmoid、Tanh)。 七、学习模式和注意事项 1. 您可以参考《雪梅 May 的 AI 学习日记》,如果您是纯 AI 小白,可以先看左边的目录。学习模式可以是输入→模仿→自发创造。 2. 注意学习内容可能会更新,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 3. 学习时间可以灵活安排,不必每天依次进行,有空的时候学习即可。 4. 本学习计划中的学习资源大多是免费开源的。
2024-12-30
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
我是一个小白,想全面深入的了解AI,需要怎么开始学习
以下是为小白全面深入了解 AI 提供的学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-11
请给我一些优秀的、好用的智能体的“提示词”案例,我想用于学习如何撰写精良的提示词,以及更加深入的使用AI工具
以下是一些优秀的智能体提示词案例和相关学习建议: 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述;根据 Logo 图片的描述和生成意图生成图片提示词;将图片和提示词输入 Comfyui 工作生成。 提示词示例:“The pair of images highlights a logo and its realworld use for a hitech farming equipment; this logo is applied as a black and white tattoo on lower back of an inmate” 学习提示词运用的建议: 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中寻找。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。 活用提示工程工具:如 Anthropic 的 Constitutional AI。 跟上前沿研究:关注最新研究成果和方法论。 相关网站分享: Learn Prompting:https://learnprompting.org/docs/intro AI Short:https://www.aishort.top/en/ AIPRM:https://www.aiprm.com/prompts/ Prompt Library:https://promptlibrary.org/
2024-12-09
普通人想深入学习AI,并获得收入,有哪些可行的方向?
普通人想深入学习 AI 并获得收入,以下是一些可行的方向: 1. 就业岗位:可以朝着数据科学家、机器学习工程师等岗位努力。掌握 AI 技术后,有机会在这些高薪岗位上工作,获取不错的收入。同时,AI 技术在金融、医疗、制造业等众多行业都有应用,具备相关技能能增加就业机会和职业发展可能。 2. 新行业领域:技术的发展会开辟新的行业,虽然一些充分发展的行业可能因自动化而减少人力需求,但新领域会需要更多人手。例如,计算的不可约性会使事物变得更复杂,从而产生需要人类参与的“前沿”领域。 3. 提升自身认知:保持乐观,提升自己的认知,选择处于趋势内的行业。不要在当下选择已经是趋势之外的行业。 4. 学习路径: 编程基础:掌握 Python、C++ 等编程语言。 机器学习基础:了解监督学习、无监督学习等。 深度学习框架:熟悉 TensorFlow、PyTorch 等。 应用领域:钻研自然语言处理、计算机视觉、推荐系统等。 数据处理:学会数据采集、清洗、特征工程等。 模型部署:掌握模型优化、模型服务等。 行业实践:通过项目实战、案例分析积累经验。 需要注意的是,是否能通过学习 AI 赚钱取决于很多因素,如个人的学习能力、实际应用能力、对市场和商业的理解等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。而且,数学和编程基础在学习过程中必不可少,同时要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-08-08
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 在 2025 年 2 月 6 日的“聊聊你怎么使用 DeepSeek”活动中,有以下智能纪要: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 此外,1 月 27 日的宝玉日报中也有关于 DeepSeek 的内容: 拾象:DeepSeek r1 闭门学习讨论|Best Ideas Vol 3,讨论了 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。突出了 DeepSeek 长上下文能力、量化商业模式、以及其对 AI 生态系统的深远影响。重点分析了 DeepSeek 的创新路径及中国在 AI 追赶中的潜力与挑战。 转:关于 DeepSeek 的研究和思考
2025-03-09
怎么系统性的学习AI?
以下是系统性学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于中学生: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 总之,系统性学习 AI 要注重理论与实践结合,从基础入手,逐步深入,并根据自身兴趣和需求选择重点方向。
2025-03-08
现在想开始学习,应该从哪学起
对于新手学习 AI,建议您从以下几个方面入手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-03-08
我这边想学习AI动画
以下是关于学习 AI 动画的相关信息: 有一门推荐的 AI 课程,其内容包括预习周课程(如 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等)、基础操作课(涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等)、核心范式课程(涉及词汇的纸牌屋、核心范式应用、控制随机性等)、SD WebUi 体系课程(包括 SD 基础部署、SD 文生图、图生图、局部重绘等)、ChatGPT 体系课程(有 ChatGPT 基础、核心 文风、格式、思维模型等)、ComfyUI 与 AI 动画课程(包含部署和基本概念、基础工作流搭建、动画工作流搭建等)、应对 SORA 的视听语言课程(涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等)。如果想要免费获得这门课程,可以参与 video battle,获胜者有不同的奖励,包括课程和门票。扫码添加菩萨老师助理,可了解更多课程信息。 作为小白参与制作 AI 动画短片的经验分享:在项目中负责“刺猬菠萝”角色的图片和视频制作,在他人指导下掌握基本技巧并使用 MJ 和 RunWayAI 工具。为完成任务,学习入门资料、参与团队讨论并向有经验的人请教。对于想要了解 AI 生成图像和生成视频的朋友,建议多看教程多实践、积极参与社群交流、保持好奇心和探索精神。AI 技术发展迅速,对视频内容创作产生深远影响,提高制作效率、降低制作成本,为设计小白提供机会。
2025-03-08