Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想借助AI帮我理解学术名词,需要如何操作?

Answer

要借助 AI 帮助您理解学术名词,您可以采取以下几种操作方式:

  1. 使用在线智能语言模型工具,如 ChatGPT 等,向其清晰准确地描述您想要理解的学术名词,并提出您的疑问和需求。
  2. 利用知识问答类的 APP 或网站,输入相关学术名词,获取相关的解释和说明。
  3. 对于一些特定领域的学术名词,还可以查找专门针对该领域的 AI 辅助学习工具。

在与 AI 交流时,尽量详细地描述您的困惑和期望,以便获得更准确和有用的回答。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30
我应该怎样开始学习AI
以下是新手开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生来说: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
国内AI工具及相关网站有哪些?
以下是国内部分 AI 工具及相关网站: |排行|产品名|分类| |||| |15|墨刀 AI|设计工具| |16|无限画|图像生成| |17|autoDL 云服务租用|Agent| |18|百度 Chat|AI ChatBots| |19|360AI 搜索(没接 GA)|搜索| |20|AIbot ai 工具集|导航网站| |21|创客贴 AI|设计工具| |22|MasterGo|设计工具| |23|美图设计室|图像编辑| |24|魔搭社区阿里达摩院|AI 训练模型| |25|即时 AI 设计|设计工具| |26|Boardmix 博思 AI 白板|PPT| |27|百度飞桨 AI Studio|AI 学习| |28|字节扣子|| |29|提示工程指南|Prompts| |30|toolsdar|导航网站| |31|autoDL 云服务租用|| |32|AIbot ai 工具集|导航网站| |33|同花顺问财|金融| |34|魔搭社区阿里达摩院|AI 训练模型| |35|MasterGo|设计工具| |36|即时 AI 设计|设计工具| |37|百度 Chat|AI ChatBots| |38|创客贴 AI|设计工具| |39|即梦 AI(剪映)|其他视频生成| |40|可灵 AI|其他视频生成| |41|360 快剪辑|视频编辑| |42|Dify.ai|Agent| |43|Vast(算力)|| |44|提示工程指南|Prompts| |45|站酷海洛|资源| |46|toolsdar|导航网站| |47|百度飞桨 AI Studio|AI 学习| |48|Boardmix 博思 AI 白板|PPT| |49|讯飞听见|转录| |50|帆软战略|电商| |51|帆软数据|数据分析| |52|360 苏打办公|生产力| |53|标小智 LOGO 生成|图像生成| |54|edrawsoft|思维导图| |55|彩云|通用写作| |56|虎课网免费在线视频教程|AI 学习| |57|xmind|思维导图| |58|秘塔写作猫|通用写作| |59|Pixso AI|设计工具| |60|火山翻译|翻译| |61|aippt|PPT|
2025-01-30
可以做一个小红书私信自动回复的ai程序或者智能体吗
在理论上是可以创建一个小红书私信自动回复的 AI 程序或智能体的。但这需要一定的技术知识和开发能力。 首先,您需要确定回复的规则和逻辑,例如根据关键词、常见问题类型等来设定回复内容。 其次,选择适合的技术框架和工具,比如使用自然语言处理(NLP)技术和相关的库。 然后,进行数据收集和预处理,以训练模型能够准确理解和回复私信。 不过,需要注意的是,小红书的使用规则可能对自动回复有一定的限制和要求,您需要确保您的程序或智能体的使用符合其规定。
2025-01-30
有什么绘图AI工具
以下是一些常见的绘图 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建多种视图。 6. draw.io(现在称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 对于绘制 CAD 图,有以下 AI 工具和插件: 1. CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 绘制示意图的工具还有: 1. Creately:在线绘图和协作平台,利用 AI 简化图表创建,适合绘制流程图等。 2. Whimsical:专注于用户体验和快速绘图,适合创建线框图等。 3. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录平台。 3. 选择模板:利用模板库选择适合需求的模板。 4. 添加内容:添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:需要团队协作可邀请成员一起编辑,完成后导出并分享图表。
2025-01-30
我是行政专员,零基础入门AI,如果帮忙自己提供工作效率和质量
对于行政专员零基础入门 AI 以提升工作效率和质量,以下是一些建议: 1. 了解 AI 的应用场景:AI 在很多领域都有显著的成果,如交通监控、银行账户欺诈检测、核融合控制、新药发现以及应对气候变化的技术等。它有潜力在您的工作中发挥作用,例如自动化一些重复性的任务。 2. 建立 AI 工作流:目前大多数人零碎地使用 AI 工具,未将其系统应用到工作场景中,导致整体效率提升不明显甚至下降。要避免像小明那样在挑选和切换工具上浪费时间,应建立一套完整、适合自己的 AI 工作方法论和流程。 3. 系统学习和实践:深入学习如何将 AI 工具与行政工作相结合,通过不断实践找到最适合自己工作的方法和工具。
2025-01-30
学习ai的名词
以下是关于 AI 相关名词的解释: AGI:通用人工智能,指具备与人类同等智能水平和能力的人工智能。 AIGC:利用人工智能技术生成的内容。 Agent:智能体,能够自主感知、决策和行动的实体。 Prompt:提示词,用于引导 AI 生成特定的输出。 此外,还有以下相关名词和概念: 人工智能(AI):使计算机模拟人类智能的技术。 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习:一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 LLM:大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 建议您通过与 AI 对话或李继刚老师的课程来深入理解这些名词。
2024-12-09
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
Ai名词解释
以下是关于 AI 的一些名词解释和相关信息: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理,包括认知、理解、生成等部分 LLM:大型语言模型(Large Language Model),数据规模很大,耗费资金多 机器学习:是人工智能的一个分支,是以机器学习为手段,解决人工智能中的部分问题,涉及多门学科 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断 训练:通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI名词解释
以下是关于 AI 的一些名词解释、相关概念及应用场景: 名词解释: AI:人工智能(Artificial Intelligence) AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多 机器学习:是人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 推理:指利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 自然语言:自然语言(NLP)的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 应用场景: 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未详细说明具体应用)
2024-10-29
AI 常见名词 有哪些
以下是一些 AI 常见名词: chatGPT:由致力于 AGI 的 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),即让电脑处理和理解人类语言。 LLM:大型语言模型(Large Language Model),数据规模大,耗费资金多。 机器学习:人工智能的一个分支,是实现人工智能的途径之一,涉及多门学科,近 30 多年已发展为多领域科际集成。 自然语言:是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。 推理:利用训练好的模型,使用新数据推理出各种结论,也叫预测或推断。 训练:通过大数据训练出复杂的神经网络模型,用大量标记过的数据训练系统以适应特定功能。 以下是一些 AI 绘画常用的画面光线提示词: 情绪照明(mood lighting) 柔和的照明/柔光(Soft illuminaotion/ soft lights) 荧光灯(fluorescent lighting) 微光/晨光(rays of shimmering light/ morning light) 黄昏射线(Crepuscular Ray) 外太空观(outer space view) 电影灯光/戏剧灯光(cinematic lighting/ Dramatic lighting) 双性照明(bisexual lighting) 伦勃朗照明(Rembrandt Lighting) 分体照明(Split Lighting) 前照灯(front lighting) 背光照明(Back lighting) 干净的背景趋势(clean background trending) 边缘灯(rim lights) 全局照明(global illuminations) 霓虹灯冷光(neon cold lighting) 强光(hard lighting) 自上而下的光(god rays) 荧光(glowing light) 闪耀效果(sparkle) 模糊的(blurry) 镜头光晕(lens flare) 过曝(overexposure) 光线追踪(ray tracing)
2024-10-07
ai 各种名词的关系图
以下是 AI 相关名词的关系和解释: 人工智能(Artificial Intelligence,简称 AI)是一种目标,让机器展现智慧。 生成式人工智能(Generative AI,简称 GenAI)是一种目标,让机器产生复杂有结构的内容。 机器学习是一种手段,让机器自动从资料中找到公式。 深度学习是一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型(Large Language Models,简称 LLMs)是一类具有大量参数的“深度学习”模型。 ChatGPT 是一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。它是美国 OpenAI 公司开发的一款基于大型语言模型(LLM)的对话机器人,能够根据用户的输入生成连贯且相关的文本回复。 AIGC(Artificial Intelligence Generated Content)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。ChatGPT 是 AIGC 技术的一个应用实例。 AGI 是通用人工智能(Artificial General Intelligence),能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP 是自然语言处理(Natural Language Processing),就是处理人类语言。 LLM 是大型语言模型,数据规模很大,需要大量资金投入。
2024-09-18
请问有没有可以读学术论文的AI
以下是一些可以辅助阅读学术论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,可以考虑以下工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,增强对科学文献的洞察。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 在 2023 年 12 月 28 日的历史更新中,在“激发学习动力”板块新增了“Connected Papers”网站,可通过可视化图表浏览学术论文。在中国 AI 网站中新增了“彩云小梦”,是一个帮您续写故事的 AI 产品。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-20
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
免费的学术AI大模型
以下是一些免费的学术 AI 大模型: 1. 国内: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置选择【宝塔】系统。 阿里的接口,创建 API key。 也有免费接口,但大都限制一定免费额度的 Token。 2. 国外: 来操作。 此外,ProductHunt 2023 年度最佳产品榜单中的免费 AI 模型有: 1. GPT4(免费可用)——与人类水平相当的 LLM。 2. Midjourney v5(免费)——令人惊叹的逼真 AI 图像以及五指手。 3. DALL·E 3(免费可用)——轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费)——迄今为止最优秀的 70 亿参数模型,Apache 2.0。 智谱·AI 开源模型列表可参考。Token 数代表了模型支持的总 Token 数量,包括输入和输出的所有 token,且一个 token 约等于 1.8 个汉字。
2025-01-08
如何将AI应用于学术研究
将 AI 应用于学术研究可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的课题大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,保证内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 AI 的技术历史和发展方向以及目前最前沿的技术点: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涵盖语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:有大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:像监督学习、无监督学习等。 深度学习框架:例如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涉及数据采集、清洗、特征工程等。 模型部署:包含模型优化、模型服务等。 行业实践:有项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-21
AI在学术上的应用
AI 在学术上的应用十分广泛,以下为您详细介绍: 医疗领域: 健康生物制药的研究:ChatGPT、Google Bard 等技术极大加速了这方面的研究,AI 在抗癌、抗衰老、早期疾病防治等方面起着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 帮助抗衰老,筛查出高效的药物候选物;使用 AI 寻找阿尔兹海默症的治疗方法;科学家利用神经网络分析患者体液中的生物标志物,帮助早期诊断帕金森。 2024 年的突破与应用:诺贝尔物理学奖和化学奖先后颁给 AI,AI 不仅推动了机器学习的理论创新,还揭示了蛋白质折叠问题。基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3 能够高精度地预测生物分子的结构和相互作用。DeepMind 展示新的实验生物学能力 AlphaProteo,能够设计出具有高亲和力的蛋白结合剂。Meta 发布的 ESM3 是一种前沿多模态生成模型,能够学习预测任何模态组合的完成情况。 其他应用:在医学中利用大模型生成合成数据,如微调 Stable Diffusion 中的 UNet 和 CLIP 文本编码器,生成高保真度和概念正确的合成胸部 X 射线扫描数据。 机器人领域:苹果 Vision Pro 成为必备的机器人研究工具,在机器人运动和动作的远程操作控制方面表现出色。 企业自动化领域:传统的机器人流程自动化面临诸多限制,新的方法如 FlowMind(JP Morgan)和 ECLAIR(斯坦福大学)使用基础模型来解决这些问题,提高了工作流理解的准确率和任务完成率。
2024-12-12
现在有什么学术研究领域的ai应用
以下是一些学术研究领域的 AI 应用: 1. 医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究,在抗癌、抗衰老、早期疾病防治等方面起着重要作用。 AI 可提前三年诊断胰腺癌。 两名高中生与医疗技术公司合作,利用 AI 发现了与胶质母细胞瘤相关的三个新靶基因。 AI 帮助抗衰老,通过筛查化合物发现高效的药物候选物。 使用 AI 寻找阿尔兹海默症的治疗方法。 利用神经网络分析患者体液中的生物标志物,帮助早期诊断帕金森。 麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 2. 新工业革命: AI 正在工业化生物制药和医疗保健,应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。 3. 开发领域: 在医疗行业,大模型涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向。 在广告营销行业,大模型从市场分析、客户转化到客户复购均可参与,还能提高广告图案生成效率,为消费者提供更个性化、智能化和互动性强的体验,降低内容制作成本并加速创意实现。
2024-12-06
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
我当前的工作是逐字核对PDF文档和word文档,并按pdf文档将word文档修正,如何借助AI工具实现
以下是一些可以帮助您实现将 PDF 文档与 Word 文档进行核对和修正工作的 AI 工具及方法: 1. DeepL(网站):访问,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):在安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):在下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再在点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):在点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-15
AI合规审核,产品包装信息如何借助AI进行智能审核
利用 AI 进行产品包装信息的智能审核,可以参考以下类似的方法和步骤: 1. 数据收集与分析:利用 AI 工具收集和分析大量的产品包装信息数据,包括市场上已有的成功案例、相关法规要求等,以了解常见的模式和问题。 2. 关键词提取与匹配:通过 AI 提取产品包装中的关键信息,并与合规要求的关键词进行匹配,快速筛选出可能存在问题的部分。 3. 图像识别与内容审查:运用 AI 图像识别技术审查包装上的图片、图标等元素,确保其符合相关规定,同时对文字内容进行深度分析。 4. 法规库对接:将 AI 系统与最新的法规库进行对接,实时更新审核标准,保证审核的准确性和及时性。 5. 风险评估与预警:AI 可以根据分析结果评估包装信息的合规风险,并及时发出预警,提示修改。 6. 个性化审核模型:根据不同产品类型和行业特点,训练个性化的 AI 审核模型,提高审核的针对性和准确性。 7. 反馈与优化:根据审核结果和用户反馈,不断优化 AI 模型,提高审核的质量和效率。
2025-01-13
AI合规审核,产品保证信息如何借助AI进行只能审核
以下是关于借助 AI 进行产品保证信息合规审核的一些建议: 1. 建立用户的举报和响应机制:在网站建立相关投诉举报机制,如设置侵权举报按钮,简化举报流程,并建立快速响应团队,负责评估收到的侵权举报,并在必要时采取法律行动。 2. 对用户进行潜在风险提示,明确用户责任与义务:在用户协议中详细列出禁止侵权行为的条款,并明确违反协议的法律后果。通过用户教育活动,如在线研讨会、指南和常见问题解答,提高用户对版权的认识。 3. 企业应当深入钻研相关法律法规,深化版权合规流程: 定期组织知识产权法律培训,确保团队成员对相关法律法规有深刻理解,涵盖适用于 AI 生成内容的版权法、AI 创新的专利申请策略,以及对国际知识产权法律差异的理解等内容。 建立专门的法律合规团队,其职责不仅是监控,还需主动解释新法律变动对公司运营的影响,包括对新立法进行影响分析、从法律角度对产品开发提供建议,以及制定内部政策以指导公司对法律更新的响应。 制定严格的数据来源审核流程,确保所有用于训练 AI 的数据均获得明确的版权授权。对于 AI 生成的内容,应实行版权审核机制,以确保这些内容要么是原创的,要么已经得到授权使用。 4. 建立企业内容过滤与监控系统:开发或采用先进的内容识别技术,如图像识别和文本匹配,自动识别并过滤潜在的侵权内容。同时,建立内容监控小组,负责人工审核由用户生成的内容,确保过滤系统的准确性。通过结合使用技术和人工审核,提高识别侵权内容的能力,保护企业和用户免受侵权风险。
2025-01-13
AI律师,法律咨询类如何借助ai来搞定,推荐文章和工具
以下是关于法律咨询类如何借助 AI 来搞定的相关内容: 潘帅提出,使用 AI 进行数据分析时,应将各环节分开处理以优化性能和便于发现修正问题。针对复杂问题,律师可逐步深化细化提问方式。要给 AI 提供参考和学习内容,包括操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。利用专业领域术语引导 AI 回答方向,如在处理合同纠纷时提示特定方面。使用 AI 回答后要进行交叉验证,结合自身专业知识筛选判断。还可指定 AI 模仿资深律师的风格,要求其提供多个例子和从多个角度思考,如给出多种诉讼策略并分析优劣。 陶力文律师认为不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应把提示词当作相对完善的“谈话方案”,在对话中产生成果。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入就得到想要的东西。 潘帅还提到了 PEMSSC 方法,包括个性化的风格、给参考或一定逻辑结构、从多个角度思考、总结概括、区分以及明确能力或角色,并分别举例说明了如何应用。
2025-01-13
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25