Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI技术趋势

Answer

AI 技术的发展历程和前沿技术点如下:

发展历程:

  1. 早期阶段(1950s - 1960s):包括专家系统、博弈论、机器学习初步理论。
  2. 知识驱动时期(1970s - 1980s):有专家系统、知识表示、自动推理。
  3. 统计学习时期(1990s - 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。
  4. 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。

当前前沿技术点:

  1. 大模型(Large Language Models):如 GPT、PaLM 等。
  2. 多模态 AI:包括视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习:例如元学习、一次学习、提示学习等。
  5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。
  6. 机器人学:涵盖强化学习、运动规划、人机交互等。
  7. 量子 AI:包括量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

此外,《2024 年度 AI 十大趋势报告》指出:

  1. 大模型创新:架构优化加速涌现,融合迭代大势所趋。
  2. Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。
  3. AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。
  4. AI 应用格局:第⼀轮洗牌结束,聚焦 20 赛道 5 大场景。
  5. AI 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。
  6. AI 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。
  7. AI 产品趋势:多模态上马,Agent 席卷⼀切,高度个性化呼之欲出。
  8. AI 智变千行百业:左手变革生产力,右手重塑行业生态。
  9. AI 行业渗透率:数据基础决定初速度,用户需求成为加速度。
  10. AI 创投:投融资马太效应明显,国家队出手频率提升。

学习路径方面: 偏向技术研究方向:

  1. 数学基础:线性代数、概率论、优化理论等。
  2. 机器学习基础:监督学习、无监督学习、强化学习等。
  3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。
  4. 自然语言处理:语言模型、文本分类、机器翻译等。
  5. 计算机视觉:图像分类、目标检测、语义分割等。
  6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。
  7. 科研实践:论文阅读、模型实现、实验设计等。

偏向应用方向:

  1. 编程基础:Python、C++等。
  2. 机器学习基础:监督学习、无监督学习等。
  3. 深度学习框架:TensorFlow、PyTorch 等。
  4. 应用领域:自然语言处理、计算机视觉、推荐系统等。
  5. 数据处理:数据采集、清洗、特征工程等。
  6. 模型部署:模型优化、模型服务等。
  7. 行业实践:项目实战、案例分析等。

无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

大模型创新:架构优化加速涌现,融合迭代大势所趋Scaling Law泛化:推理能力成皇冠明珠,倒逼计算和数据变革AGI探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实AI应用格局:第⼀轮洗牌结束,聚焦20赛道5大场景AI应用竞争:多领域竞速运营大于技术,AI助手兵家必争AI应用增长:AI+X赋能类产品大干快上,原生AI爆款难求AI产品趋势:多模态上马,Agent席卷⼀切,高度个性化呼之欲出AI智变千行百业:左手变革生产力,右手重塑行业生态AI行业渗透率:数据基础决定初速度,用户需求成为加速度AI创投:投融资马太效应明显,国家队出手频率提升

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
想咨询一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是一些可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. PandasAI:这是一个让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:能够自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 此外,在一些特定的文档中还提到了通过代码生成和特定操作生成堆叠条形图、堆叠柱状图、百分比堆条形图等用于展示数据的方式。
2025-03-25
ai音乐有那些免费软件
以下是一些免费的 AI 音乐软件: :免费的 DAW,提供高质量的人声、鼓点、旋律、贝斯分离、全能音频分离、编辑和人声/乐器转 MIDI 功能。 :AI 音频处理。 :在音乐/视频流媒体和虚拟/增强现实中重新定义您的音频体验。 :为音乐行业提供按需创建音轨的平台。 :为娱乐行业提供音频分离解决方案,释放经典内容的全部潜力。 :在几秒钟内将任何歌曲的人声和音乐分离! :基于世界排名第一的 AI 技术的高质量音轨分离。 :使用强大的 AI 算法免费将歌曲中的人声与音乐分离。 :使用 HiFi AI 分离歌曲中的人声、鼓点、贝斯和其他乐器。 :为 DJ 歌手提供的在线 AI 人声移除器。 :人声移除和在线卡拉 OK。 :使用多种不同算法(Demucs、MDX、UVR 等)免费分离歌曲。 此外,还有一些与音乐创作和制作相关的人工智能音频初创公司: (被 Apple 收购):其音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :由 AI 驱动的软件引擎,可以生成音乐。它可以对手势、动作、代码或其他声音作出反应。 :全球最大的音乐教育平台。 :用于创作歌曲和音频录制的应用程序。 :提供无缝录音室体验的一体化在线协作平台。 :专业音频、语音、声音和音乐的扩展服务。 :视频编辑的音频解决方案。 :由 AI 驱动的音乐工作室。 :通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 :AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 :为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 :为创作者提供的在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。
2025-03-25
想咨询一下有没有可以自动查找数据生成饼状图的 AI工具
以下是一些可以自动查找数据生成饼状图的 AI 工具: 1. 对于一般的数据统计和图表生成,清华的智谱清言 Chatglm.cn 可能具备相关功能。 2. 在 CAD 领域,虽然主要是针对 CAD 图的生成,但也有一些工具可能适用于您的需求,例如: CADtools 12:这是一个 Adobe Illustrator(AI)插件,添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 Autodesk Fusion 360:是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些工具来提高效率。同时,内容由 AI 大模型生成,请仔细甄别。
2025-03-25
当前效果比较好的对口型,换脸,配音AI应用
以下是一些效果较好的对口型、换脸、配音的 AI 应用: Runway:网址为 https://runwayml.com ,有网页和 app 方便使用。工具教程: 即梦:网址为 https://dreamina.jianying.com/ ,是剪映旗下产品,生成 3 秒,动作幅度有很大升级,有最新 S 模型和 P 模型。工具教程: Minimax 海螺 AI:网址为 https://hailuoai.video/ ,非常听话,语义理解能力非常强。视频模型: Kling:网址为 kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:网址为 https://www.vidu.studio/ haiper:网址为 https://app.haiper.ai/ Pika:网址为 https://pika.art/ ,可控性强,可以对嘴型,可配音。工具教程: 智谱清影:网址为 https://chatglm.cn/video ,开源了,可以自己部署 cogvideo。工具教程: PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。工具教程: 通义万相:网址为 https://tongyi.aliyun.com/wanxiang/ ,大幅度运动很强。 luma:网址为 https://lumalabs.ai/ 即梦 AI 对口型的相关教程: 功能介绍:「对口型」是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色) 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成。先对口型,再超分补帧 关于 AI 短片的相关信息: AI 图片与视频生成的新能力与应用: 图片编辑功能:Midjourney 新增本地图片上传编辑入口,可进行局部重绘、扩图和风格转换等操作。 视频生成模型:解梦新出 p 模型和 s 模型,p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 特效玩法:皮卡和 Pixforce 有特效玩法,如人物爆炸、漂浮等,可用于优化视频效果。 视频转会:Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 视频生成中的角色生视频技术: 角色生视频突破关键帧限制:当前视频生成多依赖关键帧,而角色生视频不再是关键帧输入,而是直接传入角色本身,可更灵活生成视频,如让小男孩从左跑到右。 多角色参考生成创意视频:支持上传多张图,最多三张,可将人物、衣服、背景等元素融合生成视频,如小男孩穿裙子在宇宙飞。 角色对口型技术:如吉梦的对口型技术,支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 不同工具的角色生视频效果:对比了吉梦、Runway 等工具的角色生视频效果,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景:可用于规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。 角色生视频的未来发展:未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。
2025-03-25
如果调教ai助力成为网文作家?选用市面上哪种ai模型好一些
如果想调教 AI 助力成为网文作家,以下是一些建议和可选用的 AI 模型: 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 分三次询问:第一次从写作角度分析;第二次从读者角度分析;第三次指出文章的缺点、不足及改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述”的提示词。 分享一个根据文章内容对作者心理侧写的提示词:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 在模型选择方面: 目前只推荐 Claude 3.7 Sonnet,Anthropic 对 Claude 在编程和美学方面有深度优化,效果较好。但您也可以使用 DeepSeek 等模型进行尝试。 对于模型的选用,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。一般可选择豆包·function call 32k,“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-25
如何0基础学习Ai
以下是 0 基础学习 AI 的方法: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,还有二师兄的 AI 学习经历供您参考: 二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年: 一月:买了 4070TiSuper 显卡配 4K160 显示器,备战游戏。 二月:在七彩虹售后群老哥的分享下,要了 SD 秋叶安装包,下载教学视频,迈出 AI 学习第一步。 三月:啃完 SD 的所有教程,炼丹,因图片数据集质量一般,lora 仅供自嗨。 四月:与小伙伴探讨 AI 变现途径,尝试用 GPT 和 SD 制作图文故事绘本、小说推文项目,因组员忙而不了了之,但练了一些绘本风格的丹。 五月:因工作变动,电脑运回家,在无硬件支持下加入 Prompt battle 社群,开始 Midjourney 的学习,打磨文生图提示词学习。
2025-03-25
AI 硬件与软件市场趋势
以下是关于 AI 硬件与软件市场趋势的相关信息: 定见咨询发布的《人工智能行业 AI 硬件全景洞察报告:下一波 AI 创新机遇在物理空间》指出,AI 硬件将经历传统硬件+AI、AI 驱动型硬件到 AI 作为基础设施的三个阶段,深圳凭借产业集群优势成为全球 AI 硬件创新的热点地区。AI 推动软硬件协同创新,硬件产品的高价值区向软件偏移,软件端价值交付从订阅模式转向服务付费。报告还分析了 AI 硬件的分类、智能化简史、市场趋势、竞争格局、细分品类市场情况,以及典型团队的创新路径与策略。 机器之心的进化/理解 AI 驱动的软件 2.0 智能革命方面,在虚拟世界中做模拟,Meta 和 Nvidia 自然不能缺席。佐治亚理工学院的计算机科学家 Dhruv Batra 及 Meta AI 团队创造了名叫 AI 栖息地(AI Habitat)虚拟世界,目标是提高模拟速度。Nvidia 的 Omniverse 平台提供支持的 NVIDIA Isaac Sim 是一款可扩展的机器人模拟器与合成数据生成工具,能提供逼真的虚拟环境和物理引擎,用于开发、测试和管理智能代理。随着参与到这个领域的公司越来越多,数据和训练的需求也会越来越大,势必会有新的适合 EAI 的基础模型诞生。ARK Invest 在他们的 Big Ideas 2022 报告中提到,到 2030 年,硬件和软件的融合可以让人工智能训练的成本以每年 60%的速度下降,AI 硬件和软件公司的市值可以以大约 50%的年化速度扩大,从 2021 年的 2.5 万亿美元剧增到 2030 年的 87 万亿美元。 在 2024 年,人工智能几乎是所有软件公司和终端客户的首要任务。AI 软件公司将有效地有三种起源和结果:运行在现有软件之上的 AI 工具;运行在现有软件之上的 AI 工具,有机会取代现有的软件;成为劳动力的 AI 工具。我们正处于软件吞噬和增强劳动力的最初阶段。
2025-03-25
2025年Q1 AI产品流量趋势
以下是 2025 年 Q1 部分 AI 产品的流量趋势情况: |排名|产品|市场|分类|网址|访问量(万)|环比变化| |||||||| |1|deepseek|国内|聊天机器人|chat.deepseek.com|22541|20.4093| |A4+1|Vidu.cn|国内|视频生成|vidu.cn|13|14.776| |A5+1|deepseek 开放平台|国内|开发工具|platform.deepseek.com|1093|10.0697| |A6+1|Height Copilot|海外||height.app|118|8.0517| |A7+1|Choppity|海外||choppity.com|12|2.4443| |A8+1|DreamFace|出海||dreamfaceapp.com|93|2.402| |A9+1|SHORT AI|出海|视频生成|short.ai|11|2.3054| |A10+1|Pikzels|海外|图片生成|pikzels.com|33|2.1555| |A11+1|turbolearn ai|海外||turbolearn.ai|182|2.155| |A12+1|Gumloop|海外|智能体|gumloop.com|38|1.9783| |A13+1|Trickle|海外||trickle.so|13|1.9764| |A89+1|TARS|海外||hellotars.com|17|0.3887| |A90+1|Resume Worded|海外|简历生成|resumeworded.com|236|0.3871| |A91+1|DiffusionBee|海外||diffusionbee.com|11|0.385| |A92+1|Clay 2.0|海外|营销工具|clay.com|92|0.3827| |A93+1|Transkriptor|海外|会议助手|transkriptor.com|503|0.3762| |A94+1|Instantly|海外|销售|instantly.ai|238|0.3721| |A95+1|Sana Labs|海外||sanalabs.com|18|0.3628| |A96+1|即梦 AI|国内|图片生成|jimeng.jianying.com|283|0.3566| |A97+1|Cody|海外|代码助手|meetcody.ai|17|0.3559| |A98+1|ContentBot AI|海外||contentbot.ai|10|0.3559| |A99+1|Gling AI|海外||gling.ai|22|0.3476| |A78+1|KLING AI|出海|视频生成|klingai.com|1704|0.4457| |A79+1|HIVE|海外|研究工具|thehive.ai|10|0.4403| |A80+1|N8n|海外|开发工具|n8n.io|263|0.4309| |A81+1|YouLearn|海外||youlearn.ai|245|0.4304| |A82+1|Cockatoo|海外|会议助手|cockatoo.com|29|0.4111| |A83+1|Leo AI|海外||iamleo.ai|11|0.4071| |A84+1|PhotoAI|海外|形象生成|photoai.me|13|0.4045| |A85+1|MidReal|出海|小说生成|midreal.ai|75|0.4023| |A86+1|liteLLM|海外||litellm.ai|25|0.3927| |A87+1|11x.ai|海外|销售|11x.ai|33|0.392| |A88+1|MediSearch|海外||medisearch.io|23|0.3905|
2025-03-24
5月份AI产品流量趋势
以下是关于 5 月份 AI 产品流量趋势的相关信息: 生成式 AI 季度数据报告涵盖 2024 年 1 至 3 月。GenAI summit 将于 5 月 29 日在旧金山艺术宫举办,为期三天。 总体趋势方面,人工智能行业正在快速增长,尽管在 5 月份左右的峰值之后出现了 12 亿的流量回调,但仍有望继续增长。 提供了不同赛道和竞争情况的相关数据,如天花板潜力 TAM、月平均增速、原生产品占比、马太效应、网络效应、大厂入局情况和技术门槛等。 介绍了一些头部的 AI 产品,如 ChatGPT 保持领先,Claude、Gemini 快速追赶,国内企业 Kimi 3 月快速起量进入流量前 10。 您还可以通过 aiwatch.ai 网址、Toolify 查看更多详细数据。 需要注意的是,部分产品数据保密并受到版权法保护。
2025-03-24
最新的大模型发展趋势
以下是关于最新的大模型发展趋势的相关内容: 决策模块方面:决策模块是具身智能系统的核心,早期依赖人工编程和专用算法,如今基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面仍有局限。大模型的出现极大增强了具身智能体的智能程度,提高了环境感知等能力。具身智能体的大模型发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。VLA 输入语言、图像或视频流,输出语言和动作;VLN 输入语言、图像或视频流,输出语言和移动轨迹。 应用场景方面:大模型因其强大能力在多个领域有出色表现,成为热点。包括文本生成和内容创作、聊天机器人和虚拟助手、编程和代码辅助、翻译和跨语言通信、情感分析和意见挖掘、教育和学习辅助、图像和视频生成、游戏开发和互动体验、医疗和健康咨询、法律和合规咨询等。随着技术进步和模型优化,未来可能拓展到更多领域,同时需注意隐私、安全和伦理挑战。 OpenAI 方面:OpenAI 推出新模型为行业注入强心剂,带来新活力和希望。结合其提出的通往 AGI 的分级,正在从第一级向第二级迈进,未来可能见证 AI 从生成工具向智能体转变。
2025-03-23
我想找最新的关于大模型发展趋势的材料
以下是为您找到的关于大模型发展趋势的最新材料: 基础通识课中提到了 AI 模型及相关进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。还介绍了人工智能的发展历程,从早期到如今大模型和多模态模型百花齐放的阶段。同时提到大模型由数据、算法、算力构成,算法有技术架构的迭代,数据质量对生成理想的大模型至关重要,以及针对弱智 8 的问题对大模型进行测试等相关内容。 2023 年度中文大模型基准测评报告.pdf 中包含 2023 年国内大模型发展趋势、测评体系、方法说明、综合测评结果、SuperCLUE2.0 升级、四大维度测评分析及示例介绍、优秀模型案例介绍等内容。 2024 年历史更新(归档)中,有《探讨大模型未来:从 Scaling Law 到数据红利再到终极 Token 工厂》,探讨了大模型的未来,包括规模化法则、数据红利和 Token 工厂概念。还有《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》《智变时代/全面理解机器智能与生成式 AI 加速的新工业革命》《文生图大模型基准测评首期榜单公布,DALLE 3 取得最高 76.94 分》等相关文章。
2025-03-23
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24
AI发展技术原理脑图
以下是关于 AI 发展技术原理的相关内容: 腾讯研究院发布的“AI50 年度关键词”报告,基于全年三十余万字的 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。其中“快思考”维度采用人机协同方式呈现印象卡片,“慢思考”维度深入分析技术发展底层逻辑。 DiT 架构是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,其带来了图像生成质的飞跃,且 Transformer 从文本扩展至其他领域,Scaling Law 在图像领域开始生效。 从 AI 发展历程来看,自 1950 年提出至今短短几十年,在国内近 20 年随着互联网发展才开始普及。最初应用主要是基于 NLP 技术的聊天和客服机器人,随后中英文翻译、语音识别、人脸识别等技术取得突破并广泛应用。但以前模型应用范围相对狭窄,而 OpenAI ChatGPT 等大型语言模型的突破展示了新的发展路线,通过大规模模型预训练可涌现出广泛智能应用。 小白理解 AI 技术原理与建立框架的相关内容包括:思维链可显著提升大语言模型在复杂推理的能力;RAG 是检索增强生成,可搭建企业和个人知识库;PAL 是程序辅助语言模型;ReAct 是 reason 与 action 结合的框架,可让模型动态推理并与外界环境互动。 希望以上内容对您有所帮助。
2025-03-24
AI发展背后是哪些技术进步推动的,原理是什么?
AI 发展背后主要由以下技术进步推动: 1. 核心架构:Transformer 和 Diffusion 这两种架构分别在数据转换和数据向图像转换方面发挥了关键作用,构成了当前 AI 技术的基石。 2. 算力提升:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供强大支持。 3. 人才网络:AI 领域的关键人才大多源自 Google 及其相关实验室和收购的公司,形成强大人才网络,推动了技术发展,并培养了一批领军人物,人才在不同公司间的流动和合作促进了 AI 技术的快速进步。 其原理在于:这些技术的协同作用使得 AI 能够更高效地处理和分析大量数据,实现更复杂的任务和功能。例如,强大的算力能够支持大规模的数据训练和模型优化,优秀的架构能够提高数据处理和模型表达能力,而人才的创新和合作则不断推动技术的突破和应用拓展。
2025-03-24
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
ManusAI核心技术解读
Manus AI 的核心技术包括以下几个方面: 1. 代理功能:能够自动完成任务并交付完整结果。最终交付的结果形式多样,如文档、交互网页、播客、视频、图表等,使用户能更直观地获取信息。 2. 充分利用 AI 能力:不仅进行推理和任务规划,还结合代码能力生成最终结果。 3. 云端自动运行:AI 在云端电脑上完成包括数据收集、内容撰写、代码生成等任务。其体验特点是任务运行时间较长,但最终交付的结果超出预期。 您可以通过以下链接获取更多详细信息: 体验报告:
2025-03-22
AI绘画的技术演进历程
AI 绘画的技术演进历程如下: 早期,AI 绘画成果较为简单和粗糙。但随着技术进步,尤其是深度学习算法如卷积神经网络等的应用,AI 绘画能够生成更加复杂、逼真和富有创意的图像。如今,它已涵盖各种风格和题材,从写实到抽象,从风景到人物,并在与人类艺术家的互动和融合中不断创新。 在艺术创作方面,AI 绘画利用机器学习和深度学习等技术,模拟人类创作过程,生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验。它打破了传统手工绘画技巧的局限,通过编程、算法和数据分析等开拓新创作领域,让缺乏绘画技巧的人也能参与艺术创作,使艺术更具民主化和包容性。 在应用场景上,AI 绘画在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率;在影视制作中辅助生成特效场景和概念设计;在建筑设计中帮助构想建筑外观和内部布局。 同时,AI 绘画对艺术界的影响是复杂且双面的。它既提供了新的创作工具和可能性,也引发了关于艺术本质、创造性、版权和伦理的重要讨论。艺术界的反馈使 AI 在绘画方面有显著进展,但其在表达情感和创造性意图方面仍存在局限性,也引发了艺术家对版权、原创性和伦理问题的担忧,带来了对文化创意领域从业者职业安全的焦虑以及“侵权”嫌疑的反对之声。尽管存在争议,AI 绘画仍为艺术创作提供了新的可能性,帮助艺术家探索新创意表达方式,提高制作效率,降低制作成本,促进艺术与观众的互动,提供个性化和互动的艺术体验。
2025-03-22