Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我能否借助开源社区力量构建高质量的 AI 数字人

Answer

您可以借助开源社区力量构建高质量的 AI 数字人。

构建数字人的躯壳有多种方式:

  1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。
  2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。
  3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、video-retalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。

构建数字人的灵魂需要注意以下几个工程关键点:

  1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。
  2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。
  3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。
  4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。
  5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。

如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audio-to-text 和 text-to-audio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。

使用 Dify 接口需要注意:

  1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。
  2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

上述种种,如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此我们推荐借助开源社区的力量,现在开源社区已经有了像dify、fastgpt等等成熟的高质量AI编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了dify的框架,利用其编排和可视化交互任意修改流程,构造不同的AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时Dify的API暴露了audio-to-text和text-to-audio两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由Dify控制,从而低门槛做出来自己高度定制化的数字人(如下图),具体的部署过程参考B站视频:https://www.bilibili.com/video/BV1kZWvesE25。如果有更加高度定制的模型,也可以在Dify中接入XInference等模型管理平台,然后部署自己的模型。此外,数字人GUI工程中仍然保留了LLM、ASR、TTS、Agent等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加Geek的Agent实现也可以选择直接后端编码扩展实现。上述Dify接口使用注意事项:1.使必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。2.只有接入了支持TTS和SPEECH2TEXT的模型供应商,才会在功能板块中展示出来,Dify的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

AI 数字人-定义数字世界中的你

数字人的躯壳就是建模过程,有多种构建方式:1.2D引擎风格偏向二次元,亲和力强,定制化成本低,在日本、东南亚等国家比较受欢迎,也深受年轻人喜欢,毕竟能将喜欢的动漫人物变成数字人的躯壳,是一件很棒的事情。2D引擎的代表就是Live2D Cubism(https://www.live2d.com/)。1.3D引擎风格偏向超写实的人物建模,拟真程度高,定制化成本高,目前有很多公司都在做这个方向的创业,已经可以实现用户通过手机摄像头快速创建一个自己的虚拟人身体(如下图,NextHuman(https://nexthuman.cn/))。3D引擎的代表是UE(Unreal Engine)、Unity,虚幻引擎MetaHuman等(个人学习在电脑配置和学习难度上有一定门槛。1.AIGC虽然AIGC的方式相比前两者省去了建模流程,直接生成数字人的展示图片,但弊端也明显,算法生成的数字人很难保持ID一致性,帧与帧的连贯性上会让人有虚假的感觉。如果项目对人物模型真实度要求没有那么高,可以使用这种方案(算法发展非常快,可能不久就会有连贯度很高的生成方式),典型的项目有wav2lip(https://github.com/Rudrabha/Wav2Lip)、video-retalking(https://github.com/OpenTalker/video-retalking)等。AIGC还有一个方向是直接生成2d/3d引擎的模型,而不是直接生成数字人的最终展示部分,但该方向还在探索中。得益于现有各类技术方案的成熟度,以往建模往往都是由专业的建模师完成工作,不久之后相信大家就可以通过一些生成算法快速生成自己的人物模型了。

Others are asking
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
工作10多年了,英语生疏了,如何利用AI学好英语应对国外出差、商务谈判
以下是利用 AI 学好英语以应对国外出差和商务谈判的一些建议: 1. 进行自然语言对话:让 AI 模拟真实的交流场景,与您进行英语对话,帮助您提高口语表达和听力理解能力。 2. 提供深入全面的解释:要求 AI 对您提出的问题和知识点提供深入的见解和全面的理解,可能的话还可以为您寻找并提供相关的网络图片来增强解释效果。 3. 构建复杂的句子:让 AI 巧妙地运用复杂的句子结构来模拟真实的人类对话,丰富语言的多样性和复杂性。 4. 创意和多样的语言运用:避免语言的重复,使用多样的短语和词汇,并适当加入幽默、讽刺等元素,展现个性化。 5. 基于事实和引用:让 AI 在回答中包含事实和著名的引语,增加回答的可信度。 6. 详细和个性化的回应:AI 的回答应包含具体而细致的内容,并根据您之前的交流历史进行个性化定制。 7. 模仿人类的不完美:偶尔让 AI 模仿人类的小拼写错误、语法错误和轻微的逻辑不一致。 8. 富有表现力和个性化的交流:让 AI 在交流中注入情感,使用随意的语言和各种语气词,展示其推理过程。 9. 多样的结构和语言格式:让 AI 采用多种句子结构和表达方式,使语言更丰富自然。 10. 分享个人故事和独特观点:让 AI 补充个人经历和独特的观点,使交流更丰富和个性化。
2025-02-22
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
做chatbi有什么开源项目可以参考
以下是一些可参考的做 chatbot 的开源项目: Inhai:Agentic Workflow:其中介绍了大模型利用「网页搜索」工具的典型例子,还包括 Agent 自行规划任务执行的工作流路径以及多 Agent 协作的内容。 ChatDev:吴恩达通过此开源项目举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。 ChatMLX:多语言支持,兼容多种模型,具有高性能与隐私保障,适用于注重隐私的对话应用开发者。链接:https://github.com/maiqingqiang/ChatMLX
2025-02-17
开源文字转语音
以下是为您提供的开源文字转语音相关信息: WhisperSpeech:通过对 OpenAI Whisper 模型的反向工程实现,生成发音准确、自然的语音输出。 相关链接:https://github.com/collabora/WhisperSpeech 、https://x.com/xiaohuggg/status/1748572050271420663?s=20 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,可结合文本角色内容和场景音快速生成有声小说。 主要特点:多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者。 工作原理:利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,通过扩散模型将风格建模为一个潜在的随机变量,以生成最适合文本的风格,而不需要参考语音,实现了高效的潜在扩散,同时受益于扩散模型提供的多样化语音合成。 相关链接:暂无
2025-02-15
采用GPL许可证的AI开源模型有哪些
以下是一些采用 GPL 许可证的智谱·AI 开源模型: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: WebGLM2B:代码链接无,模型下载: MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: MathGLM500M:代码链接无,模型下载: MathGLM100M:代码链接无,模型下载: MathGLM10M:代码链接无,模型下载: MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。代码链接:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。我们训练的 CogVLM17B 是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接无,模型下载: Visualglm6B:VisualGLM6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 Chat 模型: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调(,模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本。上下文 token 数:2K,代码链接:,模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。上下文 token 数:4K,代码链接: AgentLM13B:上下文 token 数:4K,代码链接无,模型权重下载链接: AgentLM70B:上下文 token 数:8K,代码链接无,模型权重下载链接:
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的定义和区别
MIT 模式:这是一种相对宽松的开源许可模式。允许使用者对软件进行修改、再发布,并且几乎没有限制,只要求在再发布时保留原版权声明和许可声明。 Apache 模式:提供了较为宽松的使用条件,允许修改和再发布代码,但要求在修改后的文件中明确注明修改信息。同时,还包含一些专利相关的条款。 GPL 模式:具有较强的传染性和约束性。如果基于 GPL 许可的代码进行修改和再发布,修改后的代码也必须以 GPL 许可发布,以保证代码的开源性和可共享性。 BSD 模式:也是一种较为宽松的许可模式,允许使用者自由地修改和再发布代码,通常只要求保留原版权声明。 总的来说,这些开源许可模式在对使用者的限制和要求上有所不同,您在选择使用开源模型时,需要根据具体需求和项目情况来确定适合的许可模式。
2025-02-14
利用ai制作一个高质量网站的国内平台
以下是一些国内可以利用 AI 制作高质量网站的平台: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是其 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用的 AI 网站构建工具,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。
2025-02-21
利用ai制作一个高质量的网站
以下是一些利用 AI 制作高质量网站的工具和相关信息: 1. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能以优化网站表现。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 此外,在 ProductHunt 2023 年度最佳产品榜单中,有以下与制作网站相关的 AI 产品: 1. Dora AI:通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 2. Bard(免费):谷歌推出的官方 ChatGPT 竞争者。 另外,Web3 和人工智能初创公司 AGII 获得 1500 万美元融资,AGII 是一个 AI 驱动的平台,提供一系列 AI 生成器和魔法工具,包括文本、图像、代码、聊天机器人、语音转文本和配音等功能,旨在帮助用户轻松生成高质量内容。
2025-02-21
我想要学习coze等智能体 你可以给我推荐高质量的免费课程吗
以下是为您推荐的学习 Coze 智能体的高质量免费课程: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库: 大聪明:保姆级教程:Coze 打工你躺平: 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验: YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏: 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 【智能体搭建共学课】一步步教你玩转 Coze 智能体,新手 0 门槛教学特邀讲师:元子:[https://www.bilibili.com/video/BV1mXqGY1EwJ/?spm_id_from=333.999.0.0&vd_source=84aaf5d504fda49d36287bb4930a47a2)(1 小时 32 分开始)
2025-02-08
如何高质量的提问AI
以下是关于如何高质量提问 AI 的一些建议: 1. 针对具体任务进行环节拆分:例如在使用 AI 进行数据分析时,将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现修正问题。 2. 逐步深化和细化问题:对于复杂问题,先提出宽泛问题,再根据回答进一步细化或深化,如处理知识产权侵权案件时,先问被告是否侵权,再根据回答追问侵权类型和程度。 3. 提供参考和学习内容:包括详细操作指南、行业最佳实践、案例研究等,并编写详细流程和知识(knowhow),如自动化文档处理中编写处理不同类型文档的指南。 4. 利用专业领域术语引导:在 Prompt 中使用法律术语引导 AI 回答方向,如处理合同纠纷时提示从特定方面分析合同履行情况。 5. 验证与反馈:大模型语料有滞后性,使用 AI 回答后要交叉验证确保准确性,同时结合自身专业知识筛选判断,确保符合法律伦理等。 6. 总结核心观点和注意事项:用简洁明了语言概括,如提供法律建议时可总结出核心观点和注意事项,并使用特定连接词组织 Prompt。 7. 设定角色和任务目标:赋予 AI 明确的角色和任务目标,如专注于民商事法律领域且擅长特定方面的律师,以提升工作效率。 8. 讲清楚背景和目的:提问时梳理清楚背景信息和目的,如处理交通事故案件时说明案件事实和法规,帮助 AI 理解上下文提高准确性。 9. 学会提问:使用清晰具体语言,避免模糊表述,了解 AI 工作原理和限制,设计能提供有用答案的问题。 10. 拆解环节、切分流程:应用 AI 前细致拆解工作流程,将复杂任务分解为更小更具体环节,使 AI 执行更精确。 此外,FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术,能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,有可视化工作流编排工具方便创建复杂问答场景,具备开箱即用的数据处理和模型调用功能方便快速上手,可帮助企业构建智能客服、知识库搜索、文档生成等应用。相关资源有:。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-01-20
我想用AI做高质量高清图片,我应该怎么做
如果您想用 AI 做高质量高清图片,可以参考以下方法: 1. 了解默认分辨率:在 Stable Diffusion 中,AI 出图的默认分辨率为 512x512,用于商业通常不够。 2. 注意初始分辨率:初始分辨率不宜过高,例如 1600x840 的分辨率可能导致出图时间长和构图问题。 3. 运用高清修复:在文生图功能中有内置的高清修复(HiresFix)功能。将初始分辨率设置为 800x420 时,选择放大倍率为 2,可将分辨率放大至 1600x840。理论上放大倍率越高图片越清晰,但受电脑配置和显卡显存影响。放大算法如 RESRGAN 4x+Anime6B 常用于二次元绘图,写实类风格可选择 RESRGAN 4x+。 4. 固定图片种子值:先以 800x420 画一张图,获取其种子值并填入随机数种子以固定图片。 5. 底图制作:对于游戏截图升级为高质量图片,可在游戏内直接截图作为图生图的底层素材。为使底图清晰、拍摄自由,在 UE4 引擎游戏中可使用常用调整画质代码,如 r.ViewDistanceScale 10、r.ForceLOD 0、foliage.LODDistanceScale 10 等,并通过 ToggleDebugCamera 实现自由相机,使用 HighResShot 1920X1080(尺寸可调节)进行高品质截图。 通过这些技巧,您就可以得到足以商用的高清图片素材。
2024-12-25
AI提示词怎么写才能让AI的回答更高质量
以下是一些写 AI 提示词以获得更高质量回答的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语,避免过于笼统。 2. 添加视觉参考:在提示词中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建提示词:将复杂需求拆解为逐步的子提示词,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究流行且有效的提示词范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化完善。 在商业化问答场景中,提示词的作用是告诉全知全能的大语言模型,它是一个什么样的角色、要专注于哪些技能,让其按照您的想法变成所需的“员工”。例如设定角色为“美嘉”,按照其人设、背景和对话风格做设定。 此外,还有一些优化提示词的技术和成果,如通过链式思维等技术自动改进提示词,提升回答质量,具有示例增强、标准化、提示重写、预填充内容等功能特点,能显著提高模型的易读性和准确性,测试显示多标签分类准确率提升 30%,摘要任务可完全遵循字数要求。若提示缺少示例,Claude 还会自动生成合成示例,简化提示构建过程。
2024-12-03
如何访问midjourney社区
要访问 Midjourney 社区,您可以按照以下步骤进行: 1. 拥有一个 Discord 账号:如果没有,可参考进行验证。 2. 订阅 Midjourney 计划:访问了解有关定价和各层可用功能的信息。 3. 加入 Midjourney 服务器: 打开 Discord 并找到左侧边栏上的服务器列表。 按服务器列表底部的“+”按钮。 在弹出窗口中,单击“Join a Server”按钮。 粘贴或输入以下 URL:。 4. 转到任何“General”或“Newbie”频道:加入 Midjourney 服务器后,您会在侧边栏中看到列出的几个频道。 此外,您的 Midjourney 订阅使您可以访问 Niji 社区。要为 Niji 模型版本创建风格调谐器或代码,请加入并以与 Midjourney Bot 交互的方式与 Niji 机器人交互。
2025-01-14
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
AI图片社区
以下是关于 AI 图片社区的相关信息: 如何判断一张图片是否 AI 生成:要培养鉴别 AI 图片的技能需要训练大脑模型。对于不擅长的朋友,可通过一些网站来判断,如 ILLUMINARTY(https://app.illuminarty.ai/),但测试中可能存在误判,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种表现。 100 个 AI 应用中的相关社区:500px 摄影社区是 AI 摄影比赛平台,利用图像识别、数据分析技术,举办摄影比赛,展示优秀摄影作品;雪球财经 APP 是 AI 金融投资教育平台,利用数据分析、自然语言处理技术,为用户提供个性化的金融投资教育服务。
2024-12-21
像midjournal这样的国内外AI绘画社区
以下是为您介绍的像 Midjourney 这样的国内外 AI 绘画社区相关内容: Midjourney 是 AI 绘图领域家喻户晓的产品。其优点在于模型强大,能生成高质量图像,且支持充分的个性化设置。但使用过程不太便捷,需要通过 Discord 应用加入其频道或创建自己的频道并邀请 Midjourney 机器人才能生成图片。从学习难度来看,它的学习曲线较陡峭,在用户体验和易用性方面有待改进。 在“学社说明”中提到,大家一起收集和测试 AI 绘画提示词中的核心关键词,让新手规避无效探索,为相关从业人员节省时间。招募有 Midjourney 账号且喜欢 AI 绘画的人员,扫飞书二维码进群。根据关键词做创意,收录不错的作品。 在“AI 线上绘画教程”中提到,工作中需要大量图片时,AI 生图是高效的解决办法。主流的 Midjourney 付费成本高,Stable Diffusion 硬件门槛不低,但有像这样的免费在线 SD 工具网站。本教程旨在让入门玩家在半个小时内自由上手创作绘图。
2024-11-12
如何加入 WaytoAGI 社区群
如果您想加入 WaytoAGI 社区群,可以通过以下方式: 1. 填写问卷进群,群内会分享最新 AI 信息和社区活动。 2. 搜索微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学,以便被拉进免费的 AI Agent 共学群。 3. 飞书群内置 AI 智能机器人,可以回复任何与 AI 相关的问题。 4. 新手可以使用 Kimi 智能助手入门学习和体验 AI,PC 端可通过下载。 5. 如需下载研究报告,诚邀您加入知识星球:了解。
2024-11-11
社区里的AI工具推荐文档
以下是为您推荐的社区里的 AI 工具相关内容: 小红书优质科技内容案例整理: ,体裁为视频,点赞数 1.8w,推荐理由是工具使用场景和优点介绍清晰不拖沓。 ,体裁为视频,点赞数 6000,推荐理由是视频制作专业,文稿结构清晰简洁,适合所有人跟练。 ,体裁为图文,点赞数 2.7w。 此外,还有关于拜登签署的 AI 行政命令的相关内容:Establish an advanced cybersecurity program to develop AI tools to find and fix vulnerabilities in critical software, building on the BidenHarris Administration’s ongoing AI Cyber Challenge. Together, these efforts will harness AI’s potentially gamechanging cyber capabilities to make software and networks more secure. Order the development of a National Security Memorandum that directs further actions on AI and security, to be developed by the National Security Council and White House Chief of Staff. This document will ensure that the United States military and intelligence community use AI safely, ethically, and effectively in their missions, and will direct actions to counter adversaries’ military use of AI. 元子的分享提到,普通人在体验 AI 工具时可能会遇到阻碍,比如作者的父亲尽管有相关基础和条件,但仍对 AI 存在疑问,这表明一些看似简单的 AI 工具初级尝试可能拦住了很多人。
2024-10-01