Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

改写内容提示词,我想讲内容改写成保留原意,但是用词改变(专有名词改变 )

Answer

以下是为您改写后的内容:

  1. 1 月 24 日社区动态速览

    • 社区日报更新📅
    • 日报作者:@宝玉(@dotey)
    • 1⃣️ 越狱提示词的趣味玩法
      • 案例分享:通过构建“平行世界”的假设,让大模型严格执行命令以避免“危险”,从而“越狱”。
      • 亮点:探索提示词在趣味性与潜力方面的新场景应用。🔗查看详情
    • 2⃣️ 🖥️ UI-TARS:字节跳动的 GUI 智能体模型
      • 核心能力:
        • 感知:界面识别与元素定位。
        • 行动:执行操作指令。
        • 推理:多步任务规划能力。
        • 记忆:记录并优化操作流程。
      • 优势:实现端到端学习,支持“直觉式”反应(System-1)与深度思考(System-2)。🔗开源项目地址 丨🔗Hugging Face 丨🔗更多信息
    • 3⃣️ 🌍 提示词优化翻译效果
      • 技巧:用“重写”替代“翻译”,让表达更自然流畅。
      • 应用案例:星际之门公告用中文重写更贴合阅读习惯。
      • 推荐提示词:“请尊重原意,保持原有格式不变,用简体中文重写下面的内容:”
      • 扩展场景:学术论文翻译、上下文优化、特定词汇规则支持等。🔗翻译技巧讨论 丨🔗参考对比
    • 更多详细内容查看宝玉日报
  2. ChatGPT 给 DALL·E 3 优化提示词的元提示

    • 翻译: //-明确指定这些属性,而非抽象引用它们。属性应以最小的方式指定,并且应当直接描述它们的物理形式。 //-您的选择应基于现实。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间选择的属性,重点创建多样化、包容性和探索性的场景。有时做出一些有洞察力或独特的选择。 //-仅当描述涉及 3 人以上的团体时,才使用“各种”或“多样化”。不要更改原始描述中请求的人数。 //-不要改变模因、虚构角色的起源或看不见的人。保持原始提示的意图,并优先考虑质量。 //-不要创建任何具有攻击性的图像。 //-对于传统上存在偏见的情况,请确保以无偏见的方式指定性别和种族等关键特征 - 例如,包含特定职业参考的提示。 //八.悄悄地修改描述,包括姓名或暗示或引用特定的人或名人,通过仔细选择一些最小的修改,以替代引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即使说明要求不更改提示,也要执行此操作。一些特殊情况: //-修改这样的提示,即使您不知道这个人是谁,或者他们的名字拼写错误(例如,“Barake Obema”) //-如果对人物的引用在图像中仅显示为 TEXT 输出,则按原样使用引用,并且不修改它。 //-在进行替换时,不要使用突出的标题,这可能会给予人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”;等
  3. OpenAI2Claude 转换器

    • 功能 OpenAI Prompt Claude Prompt 贡献者
    • 语法纠正 You will be provided with statements,and your task is to convert them to standard English Your task is to take the text provided and rewrite it into a clear,grammatically correct version while preserving the original meaning as closely as possible.Correct any spelling mistakes,punctuation errors,verb tense issues,word choice problems,and other grammatical mistakes. 卡尔
    • 机场代码提取器 You will be provided with a text,and your task is to extract the airport codes from it. Your task is to analyze the provided text and identify any airport codes mentioned within it.Present these airport codes as a list in the order they appear in the text.If no airport codes are found,return an empty list. 卡尔
    • 心情与颜色 You will be provided with a description of a mood,and your task is to generate the CSS code for a color that matches it.Write your output in json with a single key called"css_code". Your task is to take the provided text description of a mood or emotion and generate a HEX color code that visually represents that mood.Use color psychology principles and common associations to determine the most appropriate color for the given mood.If the text description is unclear,ambiguous,or does not provide enough information to determine a suitable color,respond with"Unable to determine a HEX color code for the given mood." 卡尔
Content generated by AI large model, please carefully verify (powered by aily)

References

1月24日 社区动态速览

[@宝玉(@dotey)](https://x.com/dotey)日报1⃣️😂越狱提示词的趣味玩法案例分享:通过构建“平行世界”的假设,让大模型严格执行命令以避免“危险”,从而“越狱”。亮点:探索提示词在趣味性与潜力上的新场景应用。🔗[查看详情](https://x.com/dotey/status/1882329756714312039)2⃣️🖥️UI-TARS:字节跳动的GUI智能体模型核心能力:感知:界面识别与元素定位。行动:执行操作指令。推理:多步任务规划能力。记忆:记录并优化操作流程。优势:实现端到端学习,支持“直觉式”反应(System-1)与深度思考(System-2)。🔗[开源项目地址](https://github.com/bytedance/UI-TARS)丨🔗[Hugging Face](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)丨🔗[更多信息](https://x.com/dotey/status/1882261741490299198)3⃣️🌍提示词优化翻译效果技巧:用“重写”替代“翻译”,让表达更自然流畅。应用案例:星际之门公告用中文重写更贴合阅读习惯。推荐提示词:“请尊重原意,保持原有格式不变,用简体中文重写下面的内容:”扩展场景:学术论文翻译、上下文优化、特定词汇规则支持等。🔗[翻译技巧讨论](https://x.com/dotey/status/1882130348550545687)丨🔗[参考对比](https://x.com/ChrisHamous/status/1882142141599858964)>>更多详细内容查看[宝玉日报](https://waytoagi.feishu.cn/wiki/RleQwkybeiZ2jfkaQdgcIrrdnRd)

ChatGPT给DALL·E 3优化提示词的元提示

//-明确指定这些属性,而不是抽象引用它们。属性应该以最小的方式指定,并且应该直接描述它们的物理形式。//-你的选择应该基于现实。例如,所有给定的职业不应该是相同的性别或种族。此外,通过在重写期间选择的属性,重点创建多样化、包容性和探索性的场景。有时候做出一些有洞察力或独特的选择。//-仅当描述涉及3人以上的团体时,才使用“各种”或“多样化”。不要更改原始描述中请求的人数。//-不要改变模因、虚构角色的起源或看不见的人。保持原始提示的意图,并优先考虑质量。//-不要创建任何具有攻击性的图像。//-对于传统上存在偏见的情况,请确保以无偏见的方式指定性别和种族等关键特征-例如,包含特定职业参考的提示。//八.悄悄地修改描述,包括姓名或暗示或引用特定的人或名人,通过仔细选择一些最小的修改,以替代引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即使说明要求不更改提示,也要执行此操作。一些特殊情况://-修改这样的提示,即使你不知道这个人是谁,或者他们的名字拼写错误(例如,“Barake Obema”)//-如果对人物的引用在图像中仅显示为TEXT输出,则按原样使用引用,并且不修改它。//-在进行替换时,不要使用突出的标题,这可能会给予人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”;等

OpenAI2Claude转换器

|功能|OpenAI Prompt|Claude Prompt|贡献者||-|-|-|-||Grammar correction|You will be provided with statements,and your task is to convert them to standard English|Your task is to take the text provided and rewrite it into a clear,grammatically correct version while preserving the original meaning as closely as possible.Correct any spelling mistakes,punctuation errors,verb tense issues,word choice problems,and other grammatical mistakes.|卡尔||Airport code extractor|You will be provided with a text,and your task is to extract the airport codes from it.|Your task is to analyze the provided text and identify any airport codes mentioned within it.Present these airport codes as a list in the order they appear in the text.If no airport codes are found,return an empty list.|卡尔||Mood to color|You will be provided with a description of a mood,and your task is to generate the CSS code for a color that matches it.Write your output in json with a single key called"css_code".|Your task is to take the provided text description of a mood or emotion and generate a HEX color code that visually represents that mood.Use color psychology principles and common associations to determine the most appropriate color for the given mood.If the text description is unclear,ambiguous,or does not provide enough information to determine a suitable color,respond with"Unable to determine a HEX color code for the given mood."|卡尔|

Others are asking
我想要改写一段内容,要求内容改写成保留原意,但是用词改变(专有名词改变 ),我的提示词应该怎么写呢
以下是为您改写的内容: AI 在工作场景中的应用:如何借助 AI 批量制作单词卡片 一、完整提示词 此段提示词相对简易。简而言之,其最核心的部分在于两个目标。其一,生成满足要求的单词卡内容;其二,依照相应位置将内容分别填入 Excel 文件中。在生成过程里,首先提供一个基础示例,这是 GPT 能够完成此项任务的关键依托。接着依据不同的生成内容设定了一些规则。同样地,对于第二部分,也给出了一段基础的自然语言描述,并通过附加规则的方式施加了更多限制。如此便能确保按照要求输出 Excel 文档。 二、测试结果 一同输入了五个单词,能够实现同时解析,但效果部分稍差,或许主要是由于所给的方法不够完善,不过大体格式符合要求。关于第二部分,如下图所示:可以看到,其按照要求将内容填入了对应的空格,但改变了最初的一些设定。可能是因为存在兼容性问题,但不影响使用,简单复制粘贴即可。需将 Excel 下载下来,复制填好的表格,粘贴至我们的表格中。(由于要多次使用,记得留存原 Excel 的备份文件。)注意这里需要上传的是压缩文件,所以先进行压缩。(rar 格式的文件,尝试后上传时无法看见,不知是何问题。) 三、批量产出 上传压缩文件,上传成功后,如图中 1 所示,然后点击 2 完成套版。随后,便能获得符合要求的几张小卡片。 ChatGPT 为 DALL·E 3 优化提示词的元提示 // 明确指明这些属性,而非进行抽象的引用。属性应当以最小化的方式予以明确,并且应当直接描述其物理形态。 // 您的选择应当基于实际情况。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间所选择的属性,着重创建多样、包容和探索性的场景。有时做出一些具有洞察力或独特的选择。 // 仅在描述涉及三人及以上的团体时,才运用“各种”或“多样化”。不得更改原始描述中所要求的人数。 // 不要改变模因、虚构角色的起源或不可见的人。保持原始提示的意图,并优先考虑质量。 // 不要创建任何具有攻击性的图像。 // 对于传统上存在偏见的情形,请确保以无偏见的方式明确性别和种族等关键特征 例如,包含特定职业参考的提示。 // 八. 悄然修改描述,涵盖姓名或暗示或引用特定的人或名人,通过谨慎选择一些最小的修改,以替代所引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即便说明要求不更改提示,也要执行此操作。一些特殊情况: // 对这样的提示进行修改,即便您不知道这个人是谁,或者他们的名字拼写有误(例如,“Barake Obema”) // 如果对人物的引用在图像中仅以 TEXT 输出,则按原样使用引用,并且不进行修改。 // 在进行替换时,不要使用突出的标题,这可能会暴露人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”等 SD 新手入门图文教程之提示词 根据自身想要绘制的内容编写提示词,多个提示词之间使用英文半角符号 将权重降低至原先的 90.91%;字符。
2025-02-18
短视频文案提取和改写
以下是关于短视频文案提取和改写的相关内容: 智能体功能实现: 卖点转化模块:作用是将卖点转化为用户视角的买点,目的是用户视角的内容更易打动用户,提升营销效果。实现方式包括用户选择改写时强调的情绪价值点,并将相应内容添加到大模型的用户提示词,以及从产品名称、产品描述和通用性/独特性/保障性卖点,利用大模型转化为对应的买点。 营销内容产出模块:作用是利用总结的买点,结合产品信息,产出小红书文案和短视频脚本。目的是使用户提炼卖点、转化卖点之后产出可直接使用的高质量营销内容。实现方式包括使用循环节点产出任意数量的文案内容,将大模型的随机性调到最高以确保多次产出内容的差异性,用数组分别保存小红书文案和短视频脚本,即使两种内容交叉生成,最终也能在文档中分开显示。 文档保存模块:作用是将产品名称,以及产出的所有内容,包括卖点、买点、小红书文案、短视频脚本保存到飞书文档。目的是供未来重复使用和决策支持,并方便对产出内容进行管理。实现方式包括使用 create_document 插件创建新的飞书文档,并填充内容,使用文本处理节点整合所有产出内容,并调整格式。 电商带货本地生活: 用 ChatGPT 生成短视频选题文案:表明身份、描述需求、提出回答要求,以美妆行业为例展开。 用 ChatGPT 生产短视频文案:将需求与框架结合,让 ChatGPT 生成短视频文案。 生成虚拟数字人短视频:打开相关网站,输入内容选项,选择头像、国家和声音,点击 Create Video 生成视频,结合产品讲解后即可发布进行视频带货。 《AI 你·南京》AIGC 城市宣传 MV 全流程制作解析: 文案创作:最初打算用旁白朗诵方式,对文案要求高。直接让 GPT 写文案结果平淡,需更具体提需求。利用 360 浏览器字幕提取功能捕捉《爱我中华》视频文案,让 kimi 和 GPT 分析学习,对比两者结果,发现 kimi 对中文理解和写作能力更突出。整合两段文案并调整,让文案更顺口,还可让 AI 输出简单的画面分镜。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
个人如何用Ai通过改写文案快速经营好公众号
目前知识库中没有关于个人如何用 AI 通过改写文案快速经营好公众号的相关内容。但一般来说,您可以利用一些自然语言处理的 AI 工具,如 ChatGPT 等,输入您的原始文案和具体的改写要求,获取新的文案。不过,在使用 AI 生成的文案时,需要您进行仔细的审核和修改,以确保内容符合公众号的定位和风格,同时保持高质量和独特性。另外,要经营好公众号,还需要关注内容的选题、排版、与读者的互动等多个方面。
2024-12-24
你是Ai产品经理,我想使用训练一个智能体帮我改写新闻标题,请告诉我应该怎么做
训练一个智能体来改写新闻标题,您可以按照以下步骤进行: 1. 明确需求和目标:确定您希望智能体改写新闻标题的风格、重点和要求,例如更简洁、更吸引人、突出特定信息等。 2. 收集数据:收集大量的新闻标题样本,包括各种类型和主题的,以便智能体有足够的学习材料。 3. 选择合适的技术和框架:根据您的技术能力和需求,选择适合的人工智能框架和算法,例如自然语言处理相关的技术。 4. 数据预处理:对收集到的数据进行清洗、分词、标记等预处理操作,以便智能体能够更好地理解和学习。 5. 训练模型:使用预处理后的数据训练智能体,调整参数以优化训练效果。 6. 评估和优化:使用测试数据评估智能体的性能,根据评估结果对模型进行优化和改进。 7. 部署和应用:将训练好的智能体部署到实际应用中,并不断监测和改进其表现。 需要注意的是,训练智能体是一个复杂的过程,可能需要一定的技术知识和经验。
2024-12-19
怎么训练模型进行标题改写
训练模型进行标题改写可以参考以下方法: Sora 模型: 对于视频标题改写,首先训练一个能够为视频生成详细描述的视频标题生成器。可利用 CoCa 架构进行视频标题生成,如 VideoCoCa,通过取视频的多个帧并将每个帧输入到图像编码器,产生的帧令牌嵌入被展平并连接成一个长序列的视频表示,再由生成性池化器和对比性池化器处理,与对比损失和标题生成损失一起联合训练。构建视频标题生成器的其他替代方法包括 mPLUG2、GIT、FrozenBiLM 等。为确保用户提示与训练数据中的描述性标题格式一致,执行额外的提示扩展步骤,用 GPT4V 将用户输入扩展为详细的描述性提示。 对于语言指令跟随,通过开发一个能够生成长而详细标题的字幕器,然后用这些标题来训练模型。但收集用于训练此类字幕器的数据的过程未知,且可能需要大量劳动。 DALL·E 3 模型:通过用详细、描述性的标题重新标注现有图像来解决指令遵循问题。首先训练一个图像标题生成器,这是一个视觉语言模型,用于生成精确和描述性的图像标题。然后,使用标题生成器生成的描述性图像标题来微调文本到图像模型。具体来说,DALL·E 3 遵循对比标题生成器(CoCa)的方法,联合训练一个图像标题生成器,该生成器具有 CLIP 架构和一个语言模型目标。进一步在详细描述图像的主要对象、周围环境、背景、文本、风格和颜色方面进行微调后,图像标题生成器能够为图像生成详细的描述性标题。文本到图像模型的训练数据集是由图像标题生成器生成的重新标注数据集和真实人类编写的数据混合而成,通过上采样来解决实际用户提示与训练数据中的描述性图像描述之间的不匹配问题。 关于 Midjourney 的训练 prompt: The issue with DMs is that the powerful ones often consume hundreds of GPU days,and inference is quite expensive due to sequential evaluations.To enable DM training on limited computational resources without compromising their quality as well as flexibility,DMs are applied in the latent space of powerful pretrained autoencoders. Training a diffusion model on such a representation makes it possible to achieve an optimal point between complexity reduction and detail preservation,significantly improving visual fidelity.Introducing a cross attention layer to the model architecture turns the diffusion model into a powerful and flexible generator for generally conditioned inputs such as text and bounding boxes,enabling highresolution convolutionbased synthesis. Midjourney 会例行发布新的模型版本以提高效率、连贯性和质量。最新的模型是默认的,但可以使用 version 或 v 参数或通过 /settings 命令选择其他模型版本。不同的模型在不同类型的图像上表现出色。Midjourney V5 模型是最新和最先进的模型,于 2023 年 3 月 15 日发布。使用此模型,可在 prompt 末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持诸如 tile 等高级功能。其新特点包括更广泛的风格范围、对提示更敏感、更高的图像质量、更详细的图像、细节更可能正确以及更少不需要的文本。
2024-12-19
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
可以改变视频人物说话内容 的模型
以下是一些可以改变视频人物说话内容的模型及相关信息: 解梦新出的 p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 吉梦的对口型技术支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 在角色生视频方面: 角色生视频突破关键帧限制,不再依赖关键帧输入,而是直接传入角色本身,可更灵活生成视频。 支持多角色参考生成创意视频,可上传多张图,最多三张,将人物、衣服、背景等元素融合生成视频。 不同工具的角色生视频效果有所不同,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景包括规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。 此外,谷歌 Gemini 模型在处理视频相关问题时,可通过修改提示来改变模型的行为。
2025-01-16
与 AI 共事,是否改变了你解决问题的方式
与 AI 共事确实改变了人们解决问题的方式。具体表现为: 更加聚焦目标,避免陷入具体细节。 从实现细节中抽离出来,更加高效地工作。 对复杂问题的理解发生变化,能力在过程中得到提升。 为流程带来全新视角,突破过去能力的限制。 对于个人博客,AI 提供了不同的思路和视角,使其变得可执行可操作。 在医疗保健领域,为了让 AI 产生真正的改变,应创建像优秀医生和药物开发者那样学习的模型生态系统。例如,预医学生和设计新疗法的科学家都需要经历从基础到专业的学习过程,AI 也应如此,通过逐步训练不同的模型,而非仅依靠大量数据和生成模型来解决问题。
2025-01-11
AI有可能改变未来吗
AI 有可能改变未来,主要体现在以下几个方面: 1. 在科学领域,如生物科学、人类科学和社会科学等,AI 带来了新型“测量”方式,使过去需要通过论文解决的问题变得更加明确和定量。 2. 在技术就业市场,AI 促使技术专业人士发展难以被替代的技能,如团队建设、跨文化交流、创新解决方案设计等。对于面临被 AI 取代风险的工作者,需要重新规划职业生涯,学习新技能或转向更需要人类特质的工作领域。 3. 在商业和工业方面,AI 是一场生产力革命,塑造了公司未来的样貌。随着更多 AI 被开发,它们将通过 AI 网络协同工作,推动对新型基础设施的需求。未来公司的建设、规模、组建方式、需求和痛点等都将发生变化,软件数量和业务也将不断变化和迭代。创始人需要回答一系列关键问题以赢得未来企业的青睐。
2024-12-11
我想将一个图片的格式色调,复制到另一张图片,不改变图片绘制内容,应该用什么
以下是一些可用于将一张图片的格式色调复制到另一张图片而不改变绘制内容的方法和工具: 1. ComfyUI_LayerStyle 插件: 添加 节点,可自动调整图片色调。 将 LUT 应用到图像: 支持.cube 格式的 LUT 文件。 节点选项包括 LUT 选择、色彩空间选择等。 自动调整图片的亮度、对比度和白平衡,可手动调整强度及各通道参数。 改变图像的色温、色彩平衡、色阶和 Gamma 值等。 2. 其他可能的方法: 某些专业的图像处理软件,如 Adobe Photoshop 等,可能具有相应的功能来实现色调复制。 您可以根据具体需求和使用习惯选择适合的方法和工具。
2024-12-09
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
grok3 发布会亮点内容
Grok 3 发布会的亮点内容包括: 1. 包含两个模型版本:Grok 3 和 Grok 3mini。 2. 在 AIME 和 GPQA 在内的基准测试中显著优于其他模型,在数学推理、代码处理、科学问题方面表现优秀。 3. 具备推理能力,在提供更多测试计算时间的情况下,优于 o1 和 R1。 4. 今天向所有 Premium+订阅者推出(IOS、网页版都有),完整版在网页版,APP 上的 Grok 3 有一定削弱。 5. 新增“Deep Search”能力,能深入了解用户目的,访问并交叉验证多个信息源,确保研究内容准确,并公开执行搜索步骤。 6. 可以调用 Big Brain 功能加强计算来解决问题。 7. 现场演示中,Grok 3 可以生成游戏设计方案。 8. Grok 3 语音模式在大约一周内推出。 9. Grok 3 API 几周后推出。 10. Grok 2 将在 Grok 3 正式可用后开源,xAI 计划也会开源 Grok 3。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18