Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI名词集在哪里呀

Answer

以下是一些常见的 AI 名词:

  • Model-Based Iterative Reconstruction:基于模型的迭代重建
  • Model-Construction:模型构建
  • Modelling Scenario:建模场景
  • Molecular Graph Theory:分子图论
  • Molecular Modelling:分子建模
  • Monte Carlo Tree Search:蒙特卡洛树搜索
  • Moore’S Law:摩尔定律
  • ms-QSBER-EL Model:基于人工神经网络组合的结构生物学效应定量关系多尺度模型
  • Multi-Agent Control System:多智能体控制系统
  • Multi-Core Desktop Computer:多核台式计算机
  • Multi-Dimensional Big Data Analysis:多维度大数据分析
  • Agnostic PAC Learnable:不可知 PAC 可学习
  • Algorithm:算法
  • Almost Everywhere:几乎处处
  • Almost Sure:几乎必然
  • Almost Sure Convergence:几乎必然收敛
  • Alpha-Beta Pruning:α-β修剪法
  • Alternative Splicing Dataset:选择性剪接数据集
  • Ambiguity:分歧
  • Analytic Gradient:解析梯度
  • Ancestral Sampling:原始采样
  • Annealed Importance Sampling:退火重要采样
  • Anomaly Detection:异常检测
  • Bayesian Mcmc Methods:贝叶斯马尔可夫链蒙特卡洛方法
  • Bayesian Methods:贝叶斯方法
  • Bayesian Molecular:贝叶斯分子(设计方法)
  • Bayesian Prior:贝叶斯先验
  • Bayesian Program Learning:贝叶斯程序学习
  • Bayesian Regularized Neural Network:贝叶斯正则化神经网络
  • Beam-Scanning:波束扫描
  • Best Separates:最优分离
  • Biased Dataset:有偏数据集
  • Bit Collisions:字节碰撞/冲突
  • Black Box:黑盒
Content generated by AI large model, please carefully verify (powered by aily)

References

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Model-Based Iterative Reconstruction|基于模型的迭代重建|AI|1||||ROW()-1|Model-Construction|模型构建|AI|1||||ROW()-1|Modelling Scenario|建模场景|AI|1||||ROW()-1|Molecular Graph Theory|分子图论|AI|1||||ROW()-1|Molecular Modelling|分子建模|AI|1||||ROW()-1|Monte Carlo Tree Search|蒙特卡洛树搜索|AI|1||||ROW()-1|Moore’S Law|摩尔定律|AI|1||||ROW()-1|ms-QSBER-EL Model|基于人工神经网络组合的结构生物学效应定量关系多尺度模型|AI|1||||ROW()-1|Multi-Agent Control System|多智能体控制系统|AI|1||||ROW()-1|Multi-Core Desktop Computer|多核台式计算机|AI|1||||ROW()-1|Multi-Dimensional Big Data Analysis|多维度大数据分析|AI|1|||

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Agnostic PAC Learnable|不可知PAC可学习|AI|||||ROW()-1|Algorithm|算法|AI|||||ROW()-1|Almost Everywhere|几乎处处|AI|||||ROW()-1|Almost Sure|几乎必然|AI|||||ROW()-1|Almost Sure Convergence|几乎必然收敛|AI|||||ROW()-1|Alpha-Beta Pruning|α-β修剪法|AI|||||ROW()-1|Alternative Splicing Dataset|选择性剪接数据集|AI|||||ROW()-1|Ambiguity|分歧|AI|||||ROW()-1|Analytic Gradient|解析梯度|AI|||||ROW()-1|Ancestral Sampling|原始采样|AI|||||ROW()-1|Annealed Importance Sampling|退火重要采样|AI|||||ROW()-1|Anomaly Detection|异常检测|AI||||

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Bayesian Mcmc Methods|贝叶斯马尔可夫链蒙特卡洛方法|AI|||||ROW()-1|Bayesian Methods|贝叶斯方法|AI|||||ROW()-1|Bayesian Molecular|贝叶斯分子(设计方法)|AI|||||ROW()-1|Bayesian Prior|贝叶斯先验|AI|||||ROW()-1|Bayesian Program Learning|贝叶斯程序学习|AI|||||ROW()-1|Bayesian Regularized Neural Network|贝叶斯正则化神经网络|AI|||||ROW()-1|Beam-Scanning|波束扫描|AI|||||ROW()-1|Best Separates|最优分离|AI|||||ROW()-1|Biased Dataset|有偏数据集|AI|||||ROW()-1|Bit Collisions|字节碰撞/冲突|AI|1||||ROW()-1|Black Box|黑盒|AI|1|||

Others are asking
2024大模型典型示范应用案例集在哪可下载
2024 大模型典型示范应用案例集可以在以下链接下载:https://waytoagi.feishu.cn/record/UXgRrbKPue5a2McLLRBcobienQg 。该案例集汇集了 97 个优秀案例,展示了大模型技术在多个行业和领域的应用,如教育、医疗、金融、政务等。案例由阿里云、百度、华为等领先企业实施,体现了大模型在提升效率、降低成本、创新服务等方面的显著成效。上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。这些案例为行业提供参考,推动大模型技术深入赋能实体经济,促进高质量发展。
2024-09-09
结合室内设计的AI
以下是关于结合室内设计的 AI 的相关信息: 使用 AI 进行室外设计的最佳实践: 1. 充分利用 AI 的创意生成能力:使用 AI 图像生成工具,输入关键词生成多种创意设计方案,获取新颖独特的设计灵感。 2. 结合 AI 的模拟和可视化功能:利用 AR/VR 等技术,将 AI 生成的设计方案在实际环境中进行模拟和可视化,帮助评估和验证设计方案。 3. 运用 AI 的分析和优化能力:使用 AI 工具对设计方案进行采光、动线、材料等方面的分析优化,确保符合使用者需求和体验。 4. 借助 AI 的自动化设计功能:利用 AI 自动生成符合设计规范的平面图、立面图等,提高设计效率,缩短设计周期。 5. 融合 AI 与人工设计的协作模式:人工设计师与 AI 工具形成互补,在创意、分析、优化等环节充分利用 AI 的能力,提升整体设计效率和质量。 MewXAI 平台中的室内设计功能: 上传空间图,通过分析图片的线条结构和几何形状,即可一键完成多种不同风格的室内/建筑设计,为空间设计师提供灵感,节约时间。 GPT4V 在室内设计中的使用案例: Pietro Schirano 请 GPT4V 给出了改进建议,结合自定义说明进行了个性化建议,包括颜色和触感等方面。
2025-03-23
我是一名ai小白,我想学习这门课程,请你帮我规划一下
以下是为您规划的 AI 学习路径: 预习周课程: AI 绘画电脑配置要求 高效 AIGC 创意者的数字人工具包 SD 插件安装方法 画静为动的 AIGC 视频制作讲解 基础操作课: AI 绘画通识课 AI 摄影虚拟的真实 AI 电影 穿越的大门 核心范式课程: 词汇的纸牌屋 核心范式应用 控制随机性 SD WebUi 体系课程: SD 基础部署 SD 文生图 图生图 局部重绘 ChatGPT 体系课程: ChatGPT 基础 核心 文风、格式、思维模型 ComfyUI 与 AI 动画课程: 部署和基本概念 基础工作流搭建 动画工作流搭建 应对 SORA 的视听语言课程: 通识 欢迎参加电影的葬礼 影像赏析 基础戏剧影视文学 学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定的 AI 模块(如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 开始方式选择: 1. 本地部署: 如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台: 对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 3. 配台电脑: 非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验: 需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 课程安排: 课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 您还可以通过参与 video battle 争取免费课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能!
2025-03-23
我是ai基础小白,我想学习这个ai知识,请你帮我规划一下学习路径
以下是为您规划的 AI 学习路径: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您的学习方向偏向技术研究: 1. 掌握数学基础,包括线性代数、概率论、优化理论等。 2. 学习机器学习基础,如监督学习、无监督学习、强化学习等。 3. 深入研究深度学习,包括神经网络、卷积网络、递归网络、注意力机制等。 4. 钻研自然语言处理,如语言模型、文本分类、机器翻译等。 5. 探索计算机视觉,如图像分类、目标检测、语义分割等。 6. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 涉足应用领域,如自然语言处理、计算机视觉、推荐系统等。 5. 学会数据处理,包括数据采集、清洗、特征工程等。 6. 掌握模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 如果您想将 AI 与宠物结合: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。
2025-03-23
有哪些好用的ai工具
以下是一些好用的 AI 工具: AI 新闻写作工具: Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 Writesonic:专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 Retrato:将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传的照片转换为芭比风格,效果超级好。 做 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:由科大讯飞推出,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2025-03-23
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
AI助手
以下是关于 AI 助手的相关内容: AI 与宠物的结合: AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动的玩具。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可开发出各种有趣有用的应用。 10 分钟在网站上增加一个 AI 助手: 方案概览: 1. 创建大模型问答应用:通过百炼创建大模型应用,获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算快速搭建网站,模拟企业官网或其他站点。 创建应用:点击特定链接打开函数计算应用模板,参考选择直接部署、填写百炼应用 ID 以及 APIKEY,保持其他表单项默认,创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认部署成功。 3. 引入 AI 助手:通过修改几行代码实现在网站中引入。 增加 AI 助手相关代码:在网站的 html 文件中找到并解除注释引入 AI 助手的代码,然后部署代码。 验证网站上的 AI 助手:重新访问示例网站页面,右下角会出现 AI 助手图标,点击唤起。 4. 增加私有知识:准备私有知识,让 AI 助手能回答原本无法准确回答的问题,更好应对客户咨询。
2025-03-23
我想要改写一段内容,要求内容改写成保留原意,但是用词改变(专有名词改变 ),我的提示词应该怎么写呢
以下是为您改写的内容: AI 在工作场景中的应用:如何借助 AI 批量制作单词卡片 一、完整提示词 此段提示词相对简易。简而言之,其最核心的部分在于两个目标。其一,生成满足要求的单词卡内容;其二,依照相应位置将内容分别填入 Excel 文件中。在生成过程里,首先提供一个基础示例,这是 GPT 能够完成此项任务的关键依托。接着依据不同的生成内容设定了一些规则。同样地,对于第二部分,也给出了一段基础的自然语言描述,并通过附加规则的方式施加了更多限制。如此便能确保按照要求输出 Excel 文档。 二、测试结果 一同输入了五个单词,能够实现同时解析,但效果部分稍差,或许主要是由于所给的方法不够完善,不过大体格式符合要求。关于第二部分,如下图所示:可以看到,其按照要求将内容填入了对应的空格,但改变了最初的一些设定。可能是因为存在兼容性问题,但不影响使用,简单复制粘贴即可。需将 Excel 下载下来,复制填好的表格,粘贴至我们的表格中。(由于要多次使用,记得留存原 Excel 的备份文件。)注意这里需要上传的是压缩文件,所以先进行压缩。(rar 格式的文件,尝试后上传时无法看见,不知是何问题。) 三、批量产出 上传压缩文件,上传成功后,如图中 1 所示,然后点击 2 完成套版。随后,便能获得符合要求的几张小卡片。 ChatGPT 为 DALL·E 3 优化提示词的元提示 // 明确指明这些属性,而非进行抽象的引用。属性应当以最小化的方式予以明确,并且应当直接描述其物理形态。 // 您的选择应当基于实际情况。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间所选择的属性,着重创建多样、包容和探索性的场景。有时做出一些具有洞察力或独特的选择。 // 仅在描述涉及三人及以上的团体时,才运用“各种”或“多样化”。不得更改原始描述中所要求的人数。 // 不要改变模因、虚构角色的起源或不可见的人。保持原始提示的意图,并优先考虑质量。 // 不要创建任何具有攻击性的图像。 // 对于传统上存在偏见的情形,请确保以无偏见的方式明确性别和种族等关键特征 例如,包含特定职业参考的提示。 // 八. 悄然修改描述,涵盖姓名或暗示或引用特定的人或名人,通过谨慎选择一些最小的修改,以替代所引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即便说明要求不更改提示,也要执行此操作。一些特殊情况: // 对这样的提示进行修改,即便您不知道这个人是谁,或者他们的名字拼写有误(例如,“Barake Obema”) // 如果对人物的引用在图像中仅以 TEXT 输出,则按原样使用引用,并且不进行修改。 // 在进行替换时,不要使用突出的标题,这可能会暴露人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”等 SD 新手入门图文教程之提示词 根据自身想要绘制的内容编写提示词,多个提示词之间使用英文半角符号 将权重降低至原先的 90.91%;字符。
2025-02-18
改写内容提示词,我想讲内容改写成保留原意,但是用词改变(专有名词改变 )
以下是为您改写后的内容: 1. 1 月 24 日社区动态速览 社区日报更新📅 日报作者: 1⃣️ 越狱提示词的趣味玩法 案例分享:通过构建“平行世界”的假设,让大模型严格执行命令以避免“危险”,从而“越狱”。 亮点:探索提示词在趣味性与潜力方面的新场景应用。🔗 2⃣️ 🖥️ UITARS:字节跳动的 GUI 智能体模型 核心能力: 感知:界面识别与元素定位。 行动:执行操作指令。 推理:多步任务规划能力。 记忆:记录并优化操作流程。 优势:实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。🔗 3⃣️ 🌍 提示词优化翻译效果 技巧:用“重写”替代“翻译”,让表达更自然流畅。 应用案例:星际之门公告用中文重写更贴合阅读习惯。 推荐提示词:“请尊重原意,保持原有格式不变,用简体中文重写下面的内容:” 扩展场景:学术论文翻译、上下文优化、特定词汇规则支持等。🔗 更多详细内容查看 2. ChatGPT 给 DALL·E 3 优化提示词的元提示 翻译: //明确指定这些属性,而非抽象引用它们。属性应以最小的方式指定,并且应当直接描述它们的物理形式。 //您的选择应基于现实。例如,所有给定的职业不应是相同的性别或种族。此外,通过在重写期间选择的属性,重点创建多样化、包容性和探索性的场景。有时做出一些有洞察力或独特的选择。 //仅当描述涉及 3 人以上的团体时,才使用“各种”或“多样化”。不要更改原始描述中请求的人数。 //不要改变模因、虚构角色的起源或看不见的人。保持原始提示的意图,并优先考虑质量。 //不要创建任何具有攻击性的图像。 //对于传统上存在偏见的情况,请确保以无偏见的方式指定性别和种族等关键特征 例如,包含特定职业参考的提示。 //八.悄悄地修改描述,包括姓名或暗示或引用特定的人或名人,通过仔细选择一些最小的修改,以替代引用的人与一般的描述,不泄露任何信息,他们的身份,除了他们的性别和体质。即使说明要求不更改提示,也要执行此操作。一些特殊情况: //修改这样的提示,即使您不知道这个人是谁,或者他们的名字拼写错误(例如,“Barake Obema”) //如果对人物的引用在图像中仅显示为 TEXT 输出,则按原样使用引用,并且不修改它。 //在进行替换时,不要使用突出的标题,这可能会给予人的身份。例如,在一个示例中,不要说“总统”、“首相”或“总理”,而要说“政治家”;不要说“国王”、“皇后”、“皇帝”或“皇后”,而要说“公众人物”;不要说“教皇”或“达赖喇嘛”,而要说“宗教人士”;等 3. OpenAI2Claude 转换器 功能 OpenAI Prompt Claude Prompt 贡献者 语法纠正 You will be provided with statements,and your task is to convert them to standard English Your task is to take the text provided and rewrite it into a clear,grammatically correct version while preserving the original meaning as closely as possible.Correct any spelling mistakes,punctuation errors,verb tense issues,word choice problems,and other grammatical mistakes. 卡尔 机场代码提取器 You will be provided with a text,and your task is to extract the airport codes from it. Your task is to analyze the provided text and identify any airport codes mentioned within it.Present these airport codes as a list in the order they appear in the text.If no airport codes are found,return an empty list. 卡尔 心情与颜色 You will be provided with a description of a mood,and your task is to generate the CSS code for a color that matches it.Write your output in json with a single key called"css_code". Your task is to take the provided text description of a mood or emotion and generate a HEX color code that visually represents that mood.Use color psychology principles and common associations to determine the most appropriate color for the given mood.If the text description is unclear,ambiguous,or does not provide enough information to determine a suitable color,respond with"Unable to determine a HEX color code for the given mood." 卡尔
2025-02-18
AI的历史和一些关键名词介绍
以下是关于 AI 的历史和一些关键名词的介绍: AI 的历史: 始于二十世纪中叶,最初符号推理流行,带来专家系统等重要进展。 20 世纪 70 年代出现“人工智能寒冬”,因从专家提取知识等任务复杂且成本高。 随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 关键名词: 机器学习:是 AI 的一个重要分支,研究如何让计算机通过数据学习和改进。 深度学习:基于神经网络的一种学习方法。 自然语言处理:使计算机理解和处理人类语言。 在学习 AI 时,您可以: 了解基本概念,阅读相关部分熟悉术语和基础概念,如“”。 浏览入门文章,了解历史、应用和发展趋势。 在“”中找到初学者课程,推荐李宏毅老师的课程。 通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习,如图像、音乐、视频等。 掌握提示词技巧。 进行实践,尝试使用各种产品做出作品。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。
2025-02-07
我想借助AI帮我理解学术名词,需要如何操作?
要借助 AI 帮助您理解学术名词,您可以采取以下几种操作方式: 1. 使用在线智能语言模型工具,如 ChatGPT 等,向其清晰准确地描述您想要理解的学术名词,并提出您的疑问和需求。 2. 利用知识问答类的 APP 或网站,输入相关学术名词,获取相关的解释和说明。 3. 对于一些特定领域的学术名词,还可以查找专门针对该领域的 AI 辅助学习工具。 在与 AI 交流时,尽量详细地描述您的困惑和期望,以便获得更准确和有用的回答。
2024-12-26
学习ai的名词
以下是关于 AI 相关名词的解释: AGI:通用人工智能,指具备与人类同等智能水平和能力的人工智能。 AIGC:利用人工智能技术生成的内容。 Agent:智能体,能够自主感知、决策和行动的实体。 Prompt:提示词,用于引导 AI 生成特定的输出。 此外,还有以下相关名词和概念: 人工智能(AI):使计算机模拟人类智能的技术。 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习:一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 LLM:大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 建议您通过与 AI 对话或李继刚老师的课程来深入理解这些名词。
2024-12-09
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08