Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI领域最前沿技术的最核心的论文

Answer

以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容:

  1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。
  2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文:
    • 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。
    • 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。
    • “Kinetic Proofreading:1974 年)。
    • “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。
    • 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。

在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。

Content generated by AI large model, please carefully verify (powered by aily)

References

入门经典必读

作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

知识分子:2024 诺贝尔物理奖给了 AI 教父辛顿,本人回应“没有想到”

他最有影响力的论文包括:描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958年);描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974年);"Kinetic Proofreading:1974年);“神经网络和具有突发性集体计算能力的物理系统”(1982年)(被称为Hopfield网络),以及与D。W.Tank合著的“优化问题中决策的神经计算”(1985年)。他目前的研究和近期发表的论文主要集中在如何将动作电位定时和同步用于神经生物学计算。杰弗里·辛顿(Geoffrey E。Hinton)杰弗里·埃弗里斯特·辛顿,英国出生的加拿大计算机学家和心理学家,多伦多大学教授。以其在类神经网络方面的贡献闻名。辛顿是反向传播算法和对比散度算法(Contrastive Divergence)的发明人之一,也是深度学习的积极推动者,被誉为“深度学习教父”。辛顿因在深度学习方面的贡献与约书亚·本希奥和杨立昆一同被授予了2018年的图灵奖。1985年,在奥地利阿尔卑斯山奥伯莱赫(Oberlech)的一个研讨会他曾花了小半个世纪的时间开发神经网络,让机器拥有了深度学习的能力,如今,他的愿望实现了:人工智能之浪潮汹涌澎湃滚滚而来。然而,这位AI大神却退缩了,他对他教会它学习的机器产生了怀疑,甚至愤怒。他担心他毕生的工作可能导致人类的终结,他认为他的最终使命是警告世界!他,就是如今被誉为“AI教父”的杰佛里·埃佛勒斯·辛顿(Geoffrey Everest Hinton,1947-)[1]。家族传奇

山姆·奥特曼传(二):OpenAI 的第一次内斗

回顾2015年,AI技术与今天相比还相对简单。那时的AI系统都是非常狭窄和专门化的,能下围棋的系统甚至不能下国际象棋,更不用说理解语言或引导行人过马路了。每次你需要开发一个新的应用,都必须训练一个全新的模型,这需要大量时间和标记数据。而整个过程像是在黑暗中摸索前进:一个新模型被训练出来后,怎么看怎么都像在重复造旧轮子。鲜少有人知道如何造出别出心裁的轮子,更不要谈革命性突破了。然而,2017年,一篇名为《Attention is All You Need》的论文如同一道闪电,照亮了AI的未来道路。这篇由Google Brain团队撰写的论文介绍了Transformer架构,彻底改变了AI领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。这是一个"令人惊讶和痛苦的认识":最好的AI不是来自最专业的训练技术,而是来自拥有最多数据的人。面对诞生的新架构,OpenAI的技术领袖——伊利亚迅速认识到了Transformer的潜力。伊利亚坚信,AI的下一个重大进展将不再仅仅依赖于算法的微调,而是来自于更大规模、更多样化的数据。这个洞察力为OpenAI后来的发展指明了方向。在他的推动下,OpenAI迅速开始了基于Transformer架构的实验,特别是在自然语言处理领域。他们开发了GPT(Generative Pre-trained Transformer)系列模型,这个系列后来成为了OpenAI最著名的成果之一。研究团队收集了海量的文本数据,涵盖了从科学论文到社交媒体帖子的各种内容。格雷格则形象地将这个过程比喻为"给AI喂食整个互联网"。

Others are asking
ai写毕业论文
使用 AI 写毕业论文需要注意以下几点: 1. 虽然可以向 LLM 寻求写作建议甚至直接要求其帮忙写论文,但这并非道德的使用方式。 2. 论文写作领域中,AI 技术提供了多方面的辅助,包括文献搜索、内容生成、语言润色和数据分析等。常用的工具和平台有: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。 3. AI 文章排版工具方面,有以下选择: Grammarly 不仅检查语法拼写,还能改进排版风格。 QuillBot 可改进文本清晰度和流畅性。 Latex 常用于学术论文排版,有 AI 辅助的编辑器和插件。 PandaDoc 是文档自动化平台。 Wordtune 是 AI 写作助手。 Overleaf 是在线 Latex 编辑器,适合学术写作。 选择工具时应根据文档类型、出版标准和个人偏好来决定。对于学术论文,Latex 和 Overleaf 受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。但使用时要结合自身写作风格和需求,并仔细甄别内容。
2025-02-26
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
目前最前沿的ai服装模特app
目前较为前沿的 AI 服装模特相关的应用有: Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 InterAlia 可以帮助搭配服装。 在小红书上,有通过 AI 制作服装如 AI 小绿裙实现变现的案例,新手可用 mewxai 或幻火来制作,熟练者可用 sd 或 mj 制作。 此外,还有用 AI 定制萌娃头像等相关应用。
2025-01-06
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22
ai绘画的最前沿技术以及效果
AI 绘画的最前沿技术及效果包括以下方面: 技术融合:将艺术与先进的机器学习、深度学习等技术完美结合,如利用卷积神经网络等算法模拟人类创作过程。 打破局限:不再局限于传统手工绘画技巧,通过编程、算法和数据分析等开拓全新创作领域,为艺术家提供灵感,为缺乏绘画技巧的人提供创作机会,使艺术更具民主化和包容性。 效果提升:能够生成更加复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 应用广泛:在广告设计、游戏开发、影视制作、建筑设计等领域发挥作用,可快速生成创意概念图、创建场景和角色形象、辅助特效场景和概念设计、帮助构想建筑外观和内部布局等。 色彩与情感表达:着色画通过色彩的丰富性、情感表达、细节和纹理的突出以及创意发挥,增加作品的表现力和独特性。 关键词结构思路:包括基础描述、风格指定、色彩要求和细节强调等方面。 进阶玩法:如使用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2024-12-03
最前沿,最齐全的,最好用的写教案的中文版的AI网站
以下为一些前沿、齐全且好用的写教案的中文版 AI 网站及相关资源推荐: B 站 up 主「PAPAYA 电脑教室」的 Python 入门课,其很多课都很棒且完全免费。 对于大模型的讲解,Andrej Karpathy 讲得很好,油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g ,B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 。 资料库方面,推荐 AJ 和众多小伙伴们共创的飞书文档「🌈通往 AGI 之路」,这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新,链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 。 对于初学者,以下课程也可供参考: 微软的 AI 初学者课程:https://microsoft.github.io/AIForBeginners/ ,发布日期 2023/02/10 。 AI for every one(吴恩达教程):https://www.bilibili.com/video/BV1yL411u7q6 ,发布日期 2023/03/15 。 大语言模型原理介绍视频(李宏毅):https://www.bilibili.com/video/BV1TD4y137mP/ ,发布日期 2023/05/01 。 谷歌生成式 AI 课程:目录 https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e 。 ChatGPT 入门:目录 https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc 。
2024-08-23
基于deepseek撰写论文的方法
基于 DeepSeek 撰写论文的方法如下: 1. 高级调试策略 模糊指令优化 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 2. 行业应用案例 技术开发场景 商业分析场景 3. 异常处理方案 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证 4. 效能监测指标 首次响应准确率:目标>75% 多轮对话效率:问题解决平均轮次<3 复杂任务分解:支持 5 级子任务嵌套
2025-02-25
论文写作
在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些常用的 AI 工具和相关信息: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供云环境支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还需注意: 若向 LLM 寻求写作建议,甚至直接要求其帮忙写论文,需注意这并非道德的使用方式。 文章写作是充满挑战的技能,可分解为多个步骤,如大纲撰写、内容展开、文章润色等。不同人有不同理解和方法,可相互交流分享。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。
2025-02-24
如何用AI撰写汉语言文学论文
在撰写汉语言文学论文时,可以利用以下 AI 工具和平台来提供辅助: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,有助于精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时需注意,AI 生成的内容仅供参考,仍需自己进行深入思考和创作。
2025-02-23
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
论文撰写的提示词
以下是关于论文撰写提示词的相关内容: 1. 通用原则: 目标明确:确保每一步的目标清晰,AI 需要明确指导以产生相关和有价值的输出。 逻辑性:在所有提示策略中,逻辑性是关键,清晰、结构化的提示有助于 AI 更有效地生成输出。 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按清晰步骤进行至关重要。 考虑变量:在某些情境中尤为重要,需考虑可能影响结果的所有因素。 2. 实验示例: 运用 CoD 将文章做摘要的实验,通过 GPT 的五轮输出,以中英文两种方式撰写提示词,个人观点认为英文提示词加上中文输出的方式效果较好,密度等级 4 的结果较让人满意。 3. 学术场景数据处理: 论文内容总结:大模型结合有效的提示词可迅速总结概括文档,节省时间,如 GLM4Plus 结合良好的提示词能帮助学生快速总结论文内容。 论文内容翻译:大模型可弥补翻译软件的不足,帮助学生快速翻译论文内容,如 GLM 结合良好的提示词能提高论文阅读效率。 论文内容扩写润色:可将论文内容转化为社交媒体的科普内容,精心设计的润色提示词能根据特定场景调整,生成多样化润色结果,如针对小红书使用场景调整提示词。 4. PromptAgent 相关: 通过将 PromptAgent 应用于涵盖三个实用且不同领域的 12 个任务,能够发现有生产力的专家级提示词。PromptAgent 从初始人工编写的提示词和小组训练样本开始,不仅提高了初始人类提示词的性能,还超越了强大的 ChainofThought 和近期的提示词优化基线。大量定性结果突显了优化提示词的专家级方面,随着更强大 LLM 的出现,专家级的提示词引导将引领提示词工程的下一个时代,PromptAgent 站在了开创性的步骤上。
2025-02-21
ChatGPT核心优势
ChatGPT 的核心优势主要包括以下几个方面: 1. 语义语法和计算语言方面:从训练中有效地“拼凑出”一定数量的语义语法,其成功让构建更完整的计算语言形式成为可能,且这种语言形式易于人类理解。 2. 文本生成能力:通过获取大量人类创作的文本样本进行训练,能够生成“类似”的文本。其神经网络由简单元素组成,操作简单,但能生成连贯且遵循提示的人类语言文本。 3. 对人类语言和思维模式的揭示:表明人类语言及背后思维模式的结构比想象中更简单且具有“法律属性”,ChatGPT 已隐含发现,或许可用语义语法等明确揭示。 4. 对职业的影响:虽会对职业形态产生影响,但应被视为辅助工具。如在新媒体运营中,其能生成文章但缺乏创造性和人情味;在用户运营中能解决单点问题,但难以了解人性需求变化。运营人应提升提问技巧和培养学习方法来应对变化。
2025-02-25
Deepseek的核心优势
DeepSeek 的核心优势包括以下方面: 1. 推理型大模型:其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。 2. 更懂人话:能够理解用户用“人话”表达的需求,无需用户学习和使用特定提示词模板。 3. 深度思考:回答问题时能够进行深度思考,而非简单罗列信息。 4. 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeekR1 的核心优势: 1. 性能出色:在后训练阶段大规模使用强化学习技术,即便标注数据极少,推理能力也极大提升。 2. 任务表现:在数学、代码、自然语言推理等任务上,性能与 OpenAI o1 正式版相当。 3. API 定价优势:输入 tokens 按 1 元(缓存命中)/4 元(缓存未命中)计费,输出 tokens 为 16 元/百万。
2025-02-25
waytoAGI解决的核心场景是什么,有哪些应用案例
WaytoAGI 是一个 AI 开源社区,其核心场景包括: 1. 提供 AI 领域的最新进展、教程、工具和一线实战案例,引领并推广开放共享的知识体系。 2. 倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 3. 作为思想交流平台,汇聚行业顶尖创作者和 KOL。 应用案例方面: 1. 在上海国际 AIGC 大赛中,如《嘉定汇龙》项目中,利用多种 AI 技术如 stable diffusion 艺术字生成、comfyui 转绘、steerablemotion、runway 文生视频、图生视频等,并通过合成剪辑完成作品。 2. 社区内有像三思这样的高手分享具体教程。
2025-02-21
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
我现在想根据我的博士论文,想出一个国家社科基金的选题。但是我的博士论文感觉核心不是特别突出,我希望找到一个AI助手,让AI帮我读论文的PDF格式然后总结出一个最合适的选题,有没有推荐的AI工具?
以下是一些关于利用 AI 辅助完成您需求的建议: 1. 先拆解您的博士论文工作流程,搞清楚每个步骤的输入输出和相互关系。 2. 思考论文中的哪些环节可以引入 AI 工具来提效,一切要从业务逻辑出发,AI 是锦上添花,不能本末倒置。 3. 搭建选题库,明确论文的定位(可用 AI 辅助分析),找相关的对标论文和优秀研究。 4. 在写作环节,可用 AI 辅助拆解对标论文,提炼写作技巧,然后根据借鉴的技巧结合自身特色列出写作大纲,并使用 AI 优化大纲、查找资料、润色文章,但核心内容要自己完成,不能过度依赖 AI。 5. 起标题与配图方面,用 AI 辅助批量生成标题,再自己修改优化,评估标题是否足够吸引眼球,让 AI 分析论文提供配图建议,去免费图库搜索配图。 6. 养成习惯与总结,做每件事前都思考 AI 能提供什么帮助,把整套流程实践几次,形成肌肉记忆,不断打磨完善属于自己的 AI 辅助流程,同时警惕过度依赖,AI 只是辅助,核心能力要靠自己。 目前常见的可用于辅助您的 AI 工具如 ChatGPT 等,但具体的选择还需根据您的实际需求和使用体验来决定。
2025-02-16
李飞飞提出的Agent AI的核心观点是什么
李飞飞提出的核心观点包括: 人工智能的下一步应从大型语言模型转向大型模型,强调视觉智能在理解和与世界互动中的重要性,计算机需要具备空间智能,能够建模、推理并在三维空间中互动。 通过空间智能,AI 将理解真实世界,能够处理视觉数据,做出预测并根据这些预测采取行动。空间智能使机器不仅能够相互交互,还能与人类以及真实或虚拟的三维世界进行交互。
2025-01-13