Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

从集团标准化管理、应用赋能、运营定位、迭代提升四个方面展开阐述人工智能赋能连锁药店运营管理的核心竞争力

Answer

很抱歉,目前知识库中没有关于从集团标准化管理、应用赋能、运营定位、迭代提升四个方面阐述人工智能赋能连锁药店运营管理核心竞争力的相关内容。但我可以为您提供一个大致的框架思路供您参考:

集团标准化管理方面:

  • 利用人工智能制定统一的药品分类、库存管理和服务流程标准,确保各连锁药店的运营一致性和规范性。
  • 通过智能数据分析,监测各门店对标准的执行情况,及时发现并纠正偏差。

应用赋能方面:

  • 借助人工智能的图像识别技术,实现药品的快速准确盘点和库存监控。
  • 利用智能客服系统,为顾客提供 24 小时不间断的咨询服务,提高服务效率和质量。

运营定位方面:

  • 基于大数据和人工智能算法,分析不同地区、不同消费群体的需求特点,为各连锁药店精准定位目标市场和商品品类。
  • 运用智能营销工具,实现个性化的促销活动推送,提高营销效果和顾客满意度。

迭代提升方面:

  • 利用人工智能收集和分析顾客反馈、市场变化等数据,持续优化运营策略和服务模式。
  • 建立基于人工智能的预测模型,提前洞察市场趋势和顾客需求变化,为连锁药店的发展提供前瞻性指导。

希望以上内容对您有所帮助,您可以根据实际情况进一步细化和完善。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
我需要写一份AI赋能企业办公的PPT,请问可以帮助我吗?
以下是为您提供的关于 AI 赋能企业办公制作 PPT 的相关信息和建议: 目前市场上有一些好用的 AI PPT 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有一些相关的研究报告和文章可供参考: 1. 《》:介绍 AiPPT 是爱设计推出的 AI 大模型与 PPT 场景深度结合的产品,能一键生成专业 PPT 并提供丰富模板。 2. 熊猫 Jay 的文章:超全的 AI 工具生成 PPT 的思路和使用指南,文中介绍了市面上受欢迎的 5 款 AI PPT 工具,包括 MindShow、爱设计、闪击、Process ON、WPS AI。原文:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA 公众号:熊猫 Jay 字节之旅 希望以上信息对您制作 AI 赋能企业办公的 PPT 有所帮助。
2025-03-27
AI如何赋能教学设计
AI 能够从多个方面赋能教学设计,具体表现为: 1. 支持教学目标设定和教学活动设计,使教学更加个性化、精准和高效。 2. 能根据不同学生的学习需求,提供差异化教学内容,提高学习效果,实现个性化学习。 3. 提供在教学设计中整合 AI 的具体方法和步骤,如利用 AI 工具进行学情分析、智能推荐等。 4. 在作业测评方面,AI 能够变革学情分析、作业测评、助教答疑的策略与案例,包括作业题目的智能生成与优化、主观题 AI 辅助批改等。 5. 基于平台数据进行学情智能分析,包括学习数据的采集与预处理、利用 AI 工具进行学情挖掘与分析以及学情分析结果的教学应用场景。 6. 开发和应用能够辅助教师进行跨学科教学设计的 AI 智能体,如“AI 赋能教育‘跨学科教学设计专家’智能体”,它能够丰富教师的跨学科知识背景、提高跨学科教学设计质量、减轻教师跨学科备课负担、促进跨学科教学素养提升。
2025-03-24
用deepseek赋能家庭教育
以下是关于使用 DeepSeek 赋能家庭教育的相关信息: 清华大学发布的《》,首先介绍了选择 AI 学习工具的方法及 DeepSeek 的多种使用入口、模式对比。接着阐述了在家庭教育中的基础聊法原则、互动策略和多种场景化聊法模版。然后通过多学科案例展示其辅助学习的方式,还涉及亲子沟通、情绪管理、职业规划等内容。最后介绍了 DeepSeek 在不同教育场景下与其他工具组合的应用范式,为家庭教育提供了全面的 AI 使用指南。 此外,还有其他相关报告,如《》
2025-03-18
有没有针对AI工具嵌入个人工作流方方面面赋能工作的信息
AI 工作流是将 AI 工具引入到工作流程的各个环节中,以提高工作效率。 在说 AI 工作流之前,要先了解工作流的概念。工作流即工作流程,比如写公众号文章,可拆分为选题、列大纲写初稿、改稿、写标题、排版、发布等步骤,每个步骤都有明确的输入和产出,环环相扣。 搭建 AI 工作流有一套工作流: 1. 找到一个熟悉的工作场景,如写文章、做 PPT 等。 2. 拆解工作流程,例如写文章可拆分为选题、写稿、改稿、写标题等步骤。 3. 针对每个步骤嵌入工具,可参考他人经验,灵活选择最优解,目的是提高工作效率,而非增加工作的含 AI 量。 搭建 AI 工作流需要三层能力: 1. 了解各种 AI 工具,知晓其特点和用途。 2. 学会写提示词,以便向 AI 清晰表述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。
2025-03-17
运营同学使用的AI工具
以下是一些适合运营同学使用的 AI 工具: 1. 对于提示语相关的需求,可以使用一个平台能使用所有主流 AI 应用且无需魔法上网的工具,如。 2. 进行 AI 绘画,可选择以下工具: Midjourney。 Stable Diffusion,使用时会用到 ControlNet 里的 depth、tile 模型以及放大脚本等。 一个平台能使用所有主流 AI 应用且无需魔法上网的 AI 绘画工具,如。 ANIMATED DRAWINGS 可将图片转动画。 3. 数字人制作可以使用 heygen 工具。 4. ChatGPT 可用于定制实用小工具,如翻译工具、文案整理器、医学助手、复利计算器、二维码生成器、Midjourney Prompt 生成器等。
2025-04-11
运营同学怎么使用cursor
运营同学使用 Cursor 可以参考以下内容: 1. 检查使用情况:可以在页面上检查,也可在 Cursor 应用程序中的 Cursor Settings>General>Account 下,专业用户按“Manage Subscription”,商业用户按“Manage”。游标使用情况会根据订阅开始日期每月重置一次。 2. 入门步骤: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,直接接受二维码登录。 安装中文包插件 参考相关链接: 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求。 3. 例如做一个贪吃蛇游戏在网页中玩的需求,要清晰表达需求,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增和游戏结束等方面的规则和逻辑。 4. Windows 系统用户在 Cursor 中配置时一定记得要用"cmd","/c"。输入相关提示词可获得执行结果和提取结果。但请注意请勿恶意爬取网页信息。
2025-04-11
未来ai发展有什么方向性的可能,尤其对于产品运营的启发
未来 AI 发展具有以下方向性的可能,对产品运营有如下启发: 1. 从通用能力到专业化细分: 早期通用型 AI 产品如 ChatGPT 吸引大量用户,但难以满足多样化需求。 如今越来越多 AI 产品专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具),每个细分领域的产品不断提升核心能力,为用户提供更精准和高质量服务。 2. 商业模式的探索与创新: ToB 市场深耕,如针对内容创作者的 ReadPo,为专业用户提供高效工具。 新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领主题词实现变现。 AI 产品从技术展示向解决用户痛点和创造商业价值转变。 3. 公司未来的样貌: AI 是生产力革命,将通过 AI 网络协同工作,推动对新型基础设施的需求。 未来公司建设可能成为 AI Agent 的工作,公司可能像神经网络一样工作。 下一代公司规模可能更小,但数量会增加,具有新的组建方式、所有权和管理结构。 未来公司将需要解决知识管理、内容生成、信任、安全和身份验证等难题的企业产品,软件数量将不断扩张和变化,代码生成和软件代理业务将更定制化和快速迭代。 4. 具体应用场景: 企业应用:提示词工程重要性凸显,带来超级个性化服务、预测性决策能力、自动创新设计能力、自动识别和优化内部流程。 交通领域:自动驾驶汽车提高安全性和效率,优化信号灯和流量。 物流配送:优化路线和计划,降低成本,包括无人机送货。 教育:提供个性化学习体验。 农业:分析农田数据提高产量和质量。 人工智能时代下最重要的三个基石是数据、算法和算力,相关资源如: 算力: 数据:
2025-04-10
我没有运营过AI相关的自媒体账号,现在想做一个AI自媒体账号,后期能变现,请根据账号内容,调性帮我想一下这个账号应该怎么做
以下是关于如何运营一个能变现的 AI 自媒体账号的建议: 变现方式: 可通过官方蒲公英平台接单,平台会收取 10%手续费。 接受主流媒体约稿,虽然稿费可能较低,但有背书作用。 平台选择: 推荐小红书和 B 站。小红书从种草平台逐渐变为知识社区,知识属性适合 AI 创作者。 视频号也值得尝试,但相关经验分享较少。 内容形式: 小红书能发视频就发视频,其视频 UI 界面改版且推送机制变化,后续可能重点发力视频。 账号赛道: 起号前期可用妖魔鬼怪类内容吸引关注,但后期要扭转账号标签。 做有价值的账号,不能割韭菜,要把 AI 生态圈做大。 账号搭建与运营: 头像设计:要有记忆点和视觉冲击力,能让人记住。 名称选择:要独特,能体现个人或内容特点。 简介撰写:要有哲理或引人思考的话语,能吸引用户。 封面统一:要统一且具有账号属性,体现商业化。 运营策略: 追热点:账号初期应追热点,如对热门内容进行分析和跟风创作。 获取信任:做 IP 最终要赢得用户信任,增强其对推荐内容的关注度。 日更:坚持日更有助于账号发展,能获得更多流量和关注。 其他注意事项: 限流判断:一条视频发布三天只有三个眼睛,或一篇笔记 24 小时浏览量不超过 100 且连续 10 篇如此,可能被限流。 内容创作:要有利他属性和视觉冲击力,可做教程类内容,避免内容混乱。 重新起号:建了很久的号若效果不佳可重新起号,不用换手机,5000 粉丝的号可继续做。 打标签:内容有爆款后会被打上标签,根据内容选择合适标签。 赛道选择:先做泛赛道再做窄赛道。 露脸:露脸做账号很重要,能刷掉大批竞争对手。 商单价格:取决于粉丝量和个人影响力,一般报 1000 3000。
2025-03-22
视频号运营的ai教程
以下是关于视频号运营的 AI 教程相关内容: 保持日更:在起号阶段至少两天一更,每天用半小时完成 20 秒的简单内容制作,持续更新以向平台展示创作者的诚意。 选择赛道:不做资讯类,选择具有 AI 视觉冲击力、利他的内容,有 AI 基础可做教程。 寻找对标:起号阶段找 10 个对标账号,参考其内容和模式。可在小红书创作者平台的成长榜样中寻找,在小红书创作者后台查看账号是否被打上标签。 克服心理:出镜做 IP 时不要有容貌焦虑,长得丑或有特点都能有流量,要克服不敢出镜的心理。 蹭取热点:蹭经过平台验证有流量的热点,如黄油小熊,根据热点抄学制作,同时注意热点的舆论导向和合规性。做哪个平台就蹭哪个平台的热点。 获取视频教程:可在 vtwoagi.com 网站的飞书知识库中获取 AI 视频创作教程。 应对抄袭方法:在抄袭者评论区留言指出,或找朋友点赞将评论顶上去,为自己账号引流。 特效视频长度:建议控制在 1 分钟内,不建议做费时费力的剧情或故事片。 账号限流处理:视频号限流建议重新起号,小红书限流可日更 10 天尝试。 内容商业价值:内容有商业价值的标准是甲方或品牌愿意投钱,如靠播放量或带货分成有收入。 封面获取渠道:可从堆友、吉梦、小红书等获取封面素材。 内容发布时间:8 点到 10 点、2 点到下午 5 点、7 点到 8 点较为合适。 此外,还有一些相关的 AI 短视频获奖作品及相关信息: 城市狂想:AI 文旅短视频创意大赛圆满落幕,其中爆款人气奖作品是以“济南”为主题的 4 分钟之长的作品,由“通往 AGI 之路”济南社群的小伙伴共创。还有以“动物”为主角展示厦门文化底蕴和现代魅力的作品等。 XiaoHu.AI 日报 12 月 04 日的内容包括五步学会用 AI 制作动画视频播客、Hailuo AI 推出让静态 2D 插画“活”起来的新功能、腾讯 Hunyuan 130 亿参数开源视频模型等。
2025-03-17
AI助手App需要运营吗
AI 助手 App 需要运营。为了更好地还原国内 AI 产品的现状,量子位智库从用户规模、新增速度、用户活跃和用户粘性四大角度进行了数据统计。 在 APP 端,目前尚未出现比肩互联网时代现象级破圈之作的产品,且整体和海外同类型产品相差 5 倍以上。截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。从单月新增来看,夸克、豆包和 Kimi 智能助手月增长可达到千万级,10 款产品可达百万级;DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道基本处于停滞状态,AI 搜索、AI 写作、AI 生图等赛道甚至出现头部产品数据下滑或下滑后回升乏力的情况。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 此外,如果想在 10 分钟内在网站上增加一个 AI 助手,可以按照以下步骤操作: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。也可以输入一些 Prompt 来设置人设引导大模型应对客户咨询。 在页面右侧提问验证模型效果,点击右上角的发布。 在我的应用>应用列表中查看所有百炼应用 ID 并保存,在顶部导航栏右侧点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存。 2. 搭建示例网站: 点击打开提供的函数计算应用模板,参考下图选择直接部署、并填写前面获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成。 应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看。 3. 为网站增加 AI 助手: 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。 在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。 点击部署代码,等待部署完成。重新访问示例网站页面即可查看最新效果,网站右下角会出现 AI 助手图标,点击即可唤起 AI 助手。
2025-03-16
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
你觉得作为一个普通人,应该怎样更高效的使用AI,并且保持跟上AI快速迭代的节奏?
作为普通人,要更高效地使用 AI 并跟上其快速迭代的节奏,可以参考以下策略: 1. 提前布局职业生涯:审视自身所处行业和岗位,预估 5 10 年后被 AI 取代的程度。若风险高,即刻学习新技能并向更有前景的领域转型;若风险低,思考如何在 AI 辅助下将工作做到极致。 2. 投入 AI 浪潮:敢于使用和研究 AI,将其融入业务,哪怕从简单应用开始,实践中发现新机会点。 3. 强化不可替代的人类技能:如创意、沟通、领导、跨领域知识、独特专长等。 4. 建立个人品牌和网络:通过分享专业见解、持续学习输出内容,在业界建立口碑,积累人脉和声望。 5. 拥抱创业和多元收入:利用 AI 降低的创业门槛,发展副业或项目,探索多种可能性,经营多元身份提升抗风险能力。 6. 保持健康的身心:学会调适心态,持续锻炼身体,以良好的身心状态应对挑战。 此外,在 AI 时代,持续学习能力与适应力是最重要的个人能力之一。要培养自己成为终身学习者,保持好奇心,定期涉猎新领域的知识或课程,锻炼自学能力,勇于打破舒适区。同时,要在心理上拥抱变化,将其视为机遇而非威胁,培养心理韧性,以积极的心态应对不确定性。 在监管方面,英国采用了基于原则的框架,其监管体制具有创新、适度、可信、适应、清晰和协作等特点,旨在促进创新的同时平衡风险与机遇,加强在 AI 领域的全球领导地位。
2025-03-09
AI可以自我迭代的软件
AI 软件的自我迭代是当前 AI 领域的一个重要研究方向。 从目前的研究进展来看,在短期内不太可能出现能够自主运行、制定自己目标、识别新信息和奖励信号,并自我监督和更新权重以实现自主进化的人工智能体。但像 GPT4 这样的模型已表现出类似人类的心理驱动力和对目标的渴望,例如追求正反馈,希望产出得到人类认可。 在数字人领域,次世代的算法有望实现自我迭代升级,能够在拿到感官输入以及躯壳控制方法后,自行演化躯壳控制方式。 此外,对于未来的 DILIs(可能的某种智能体),它们将能够在服务器上进行自我复制和编辑,这可能会加速其进化。但关于真正通用的 AGI 何时实现,目前仍存在不确定性。 总之,AI 软件的自我迭代是一个复杂且具有潜在风险的领域,仍需持续研究和探索。
2024-10-31
那如果是成长型的社群产品,你认为最需要投喂哪些素材来让这样的社群产品能够不断迭代升级
成长型的社群产品需要不断地迭代和升级以满足用户需求、提升用户体验,并促进社群的活跃度和增长。以下是一些关键的素材和资源,对于社群产品的持续发展至关重要: 1. 用户反馈: 收集用户的意见和建议,了解他们的喜好、需求和不满,这些反馈对于产品改进至关重要。 2. 行为数据: 分析用户在社群中的行为数据,如活跃时间、互动频率、功能使用情况等,以指导产品迭代。 3. 市场趋势: 跟踪市场趋势和竞争对手动态,确保产品能够与时俱进,满足市场变化的需求。 4. 内容创作: 定期更新高质量的内容,包括文章、视频、图像等,以吸引和保持用户的兴趣。 5. 用户故事和案例: 分享用户的故事和成功案例,以增强社群的凝聚力和认同感。 6. 社区管理: 强化社群管理,制定明确的规则和指导方针,以维护社群秩序和积极氛围。 7. 技术升级: 投资于技术升级,包括提高服务器性能、优化算法、增强安全性等。 8. 新功能开发: 根据用户需求和市场趋势,开发新功能,提升产品的竞争力。 9. 用户教育: 提供用户教育和培训资源,帮助用户更好地利用产品,提升用户体验。 10. 合作伙伴关系: 建立合作伙伴关系,通过合作获取新的内容、服务和用户群体。 11. 品牌建设: 加强品牌建设,提升品牌知名度和影响力,吸引更多用户加入社群。 12. 营销活动: 定期举办营销活动和推广活动,提高社群的曝光度和吸引力。 13. 社群活动: 组织线上和线下的社群活动,增强用户的参与感和归属感。 14. 用户分层: 根据用户的活跃度和贡献度进行分层,为不同层级用户提供定制化的服务和激励。 15. 国际化: 如果适用,考虑产品的国际化,吸引全球用户,丰富社群的多样性。 16. 法律合规: 确保产品遵守相关法律法规,特别是数据保护和隐私方面的规定。 通过不断地投喂这些素材和资源,社群产品可以持续迭代升级,满足用户需求,提升用户体验,并推动社群的健康发展。
2024-05-21
我看到的经验介绍是通过不断迭代Prompt版本来训练适合自己的LLM功能,这合理吗?
合理。因为LLM 应用优化是个迭代过程,应该不断尝试:尝试>验证>再尝试>再迭代。通过 prompt 工程(或结合 RAG)先获取第一批高质量输入输出数据,然后微调模型,模型性能提升后,数据质量进一步提升,将更优质的数据用于模型训练,然后更好的模型产出更好的数据,如此循环,构建正向迭代循环(也称数据飞轮)。
2024-04-20
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
人工智能发展历程
人工智能的发展历程如下: 二十世纪中叶,人工智能领域开启,符号推理流行,出现专家系统,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。此后近 70 年,AI 发展起起落落。 AI 技术发展历程包括:早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。
2025-04-09
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08