直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。

回答

目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面:

  1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。
  2. 利用 AIGC 技术实现游戏产业的生产力革命:
    • 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。
    • 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。
  3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。
  4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。
  5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。
  6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

05.能未来发展:游戏人工智能将成为生产力革命的关键休闲是人类生活不可或缺的重要组成部分,而游戏是一种特别引人入胜的休闲方式。电子游戏是游戏的新模式,是时代的产物,是发展最为迅猛的方向,电子游戏的发展壮大与人工智能的进程相互呼应,相得益彰,同向同行,携手共进。游戏人工智能技术的未来发展方向之一,是探索如何将游戏环境中的成果迁移至现实世界。电子游戏作为人工智能算法的测试场,将持续为人工智能模型的构建与训练,提供理想化的场所。IBM的深蓝,DeepMind的AlphaGo,OpenAI的OpenAI Five都通过机器学习、强化学习等先进技术在各种游戏环境中训练人工智能,并取得了显著的成果。然而,值得注意的是,虽然人工智能在特定的游戏环境中取得了显著的成果,但将这些技术推广到更广泛的、复杂的现实世界应用,仍然面临许多挑战。例如,电子游戏环境通常是封闭和可控的,而现实世界却充满了未知和不确定性。此外,游戏中的胜利条件往往是明确和一致的,而现实生活中的目标可能会有多个,可能互相冲突,或者会随时间变化。无疑,电子游戏是人工智能研究的理想实验场,因为它们为人工智能提供了一个可以精确度量和比较性能的环境;然而,从游戏环境迁移到现实世界中的应用,还需要学界与产业界进一步进行研究和发展。游戏人工智能技术的未来发展方向之二,是利用AIGC技术,实现游戏产业的生产力革命。很早以前,人工智能技术就开始应用于游戏制作的过程中,近来基于大语言模型和扩散模型的AIGC技术,更是受到了游戏产业界的欢迎。AIGC技术极大程度地降低了开发成本,缩减了制作周期,提升了游戏质量,甚至为游戏带来了新的交互体验。在新兴的AIGC具体应用方面,人工智能正在被应用于电子游戏开发的许多方面,包括生成新的游戏内容(如地图、角色和场景),驱动游戏中的非玩家角色(NPC),以及改进游戏的图像和声音效果等。游戏人工智能技术的未来发展方向之三,为通用人工智能的孵化给予帮助。经多个复杂游戏训练后的“玩游戏”的人工智能体,将

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

03.电子游戏中的人工智能:游戏将成为AIGC的重要应用场借助人工智能技术来辅助游戏开发,能够起到提升效率和增加游戏可能性的效果。一方面,人们可以借助人工智能的内容创作工具,缩减游戏开发的成本、减少游戏开发时间,甚至提升游戏的质量和完成度;另一方面,则是利用这项技术,为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。电子游戏与人工智能的结合有着广泛的可能,包括玩家建模、辅助设计、代码辅助和代码自动生成等等。其中与游戏直接相关的应用主要包括:(1)构建游戏中的智能体;(2)构建玩游戏的智能体;(3)程序化内容生成(Procedural Content Generation,PCG)。“构建游戏中的智能体”是指构建游戏的非玩家角色(Non-player character),也就是常说的NPC。这方面的工作包括构建智能对象,创建其移动、寻路、攻击等行为,以及对话等交互行为。游戏中的智能体是游戏的重要组成部分,为游戏内容增添了风采。“构建玩游戏的智能体”是狭义人工智能研究的主要任务。这项任务试图在不同类型的电子游戏场景下,创建与人类无异,甚至超过人类玩家水平的玩家智能体。与“构建游戏中的智能体”有所不同的是,前者是在游戏中构建智能体,智能体是游戏中的一个重要组成部分;而“玩游戏”的智能体则超脱于游戏之外,其本身并不是构成游戏的一部分。“程序化内容生成”则是近来在深度学习技术崛起的背景下,对游戏产业影响最为深远的一类应用。其内容包括利用人工智能来生成文字,帮助进行剧情设计、创作游戏剧本和情节叙事;借助人工智能技术来生成图像,从而完成人物、道具、场景和用户界面的设计;利用人工智能技术来生成音频,从而完成人物配音、游戏音效和配乐;利用人工智能技术来生成视频,创作游戏动画和特效;利用人工智能技术来创建游戏关卡,丰富游戏内容等等。程序化内容生成虽在上世纪末就已经在电子游戏上得到了应用,但是其功能却相对局限。2010年后,得益于机器学习等技术的发展,程序化内容生成开始与新兴技术相结合,AIGC开始在

生成式AI在游戏领域的机会(市场假设+预测)

那么,如果我们将《荒野大镖客:救赎2》与《微软模拟飞行》相比,《微软模拟飞行》这个游戏更为巨大...因为微软飞行模拟器的玩家能够在游戏中围绕整个地球飞行,所有1.97亿平方英里的地方。那么,微软是如何打造这样一个大型游戏的呢?主要是通过人工智能来完成,微软公司与blackshark.ai合作,对人工智能进行训练,从二维卫星图像生成无限逼真的三维世界。blackshark.ai是个啥公司?blackshark.ai是通过机器学习技术,提取全球范围内的地球基础设施的公司,从全球的卫星和航空图像中提取数据,用人工智能基于目前地理数据的数字孪生场景,这些结果可用于可视化、模拟、绘图、混合现实环境和其他企业解决方案,而技术本身具备的云计算更新能力,能够实时更新这些数据。这仅仅是一个例子,如果不使用人工智能技术,《微软模拟飞行》这款游戏实际上是不可能制作完成的。除此之外,游戏的成功还要归功于这些模型可以随着时间的推移不断改进,例如,可以加强"highway cloverleaf overpass"模型,通过人工智能运行整个建造过程,游戏中的整个地球上的所有的高速公路立交桥都可以立马得到改进。3.游戏制作中涉及的每一个资产都会有一个生成的AI模型到目前为止,像Stable Diffusion或MidJourney这样的2D图像生成器,由于其能够生成的图像十分抢眼,占据了目前生成式人工智能的大部分流行的兴奋点。而现在已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从3D模型到角色动画,再到对话和音乐。(下一篇文章会讲一下具体公司的市场生态Market Map)4.内容成本将持续下降,某些情况下的内容的成本会降为零当我们和尝试将生成式AI人工智能整合到制作场景的游戏开发者交谈时,最大的兴奋点在于,制作游戏的时间和成本都会大幅降低。一位开发者告诉我们,为一张图片生成概念图的时间从3周下降到1小时。我们相信,在整个游戏流程的制作过程中也可以实现类似的“降本增效”。

其他人在问
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22
ai如何变革文化传媒游戏行业的生产关系与生产资料
AI 正在对文化传媒游戏行业的生产关系和生产资料带来多方面的变革: 1. 生成式 AI 为游戏创建 2D 艺术、纹理、3D 模型,并协助关卡设计,在营销中也有望取代部分传统内容。其应用已拓展至网页、室内和景观设计等领域,只要涉及创造性内容生成,AI 都可能成为流程的一部分甚至颠覆整个流程。 2. 游戏行业中,学会有效使用生成式 AI 将成为一项有市场价值的技能。懂得与 AI 工具最有效、最协同地合作的艺术家会变得稀缺,使用生成式 AI 进行生产艺术作品面临连贯性和风格统一等挑战。 3. 降低门槛将导致更大的冒险和创造性的探索,进入游戏开发的新“黄金时代”,更低的准入门槛将促使更具创新性和创造性的游戏大量涌现。 4. AI 辅助“微型游戏工作室”的崛起,配备生成式 AI 工具和服务,由 1 或 2 名员工组成的“微型工作室”能生产更多具有商业可行性的游戏。 5. 在 AIGC 的新世界,游戏开发变得更简单,互联网浪潮推动游戏产业分工成熟,门槛降低,GPT 等技术使编程等基础工作被替代,内容生产效率提高,想象力和热情成为新的杠杆力。
2024-12-19
适合游戏设计的aigc平台
以下是一些适合游戏设计的 AIGC 平台及相关案例: 1. 上海人工智能实验室旗下的 OpenInnoLab平台:北京市新英才学校的“AI 创作家”课程中,学生使用该平台的文生图 AI 工具生成桌游卡牌背后的图案。 2. 在“DragonX”宠物龙养成游戏中,Demo 的原则为 AIGC 的最大化,玩法内容基本都使用 AIGC 来生产游戏内容,包括世界观、核心循环、核心玩法等方面。 3. 关于游戏设计与 AIGC 的相关讨论:“质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期”涵盖了游戏与生成式 AI 的发展趋势、游戏+AI 制作的讨论、资本市场对 AI+游戏的看法、AI 对游戏领域带来的变革以及新 AI 游戏面临的问题等多方面内容。
2024-12-18
请将以下提示词改写为markdown格式:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的 Markdown 格式的提示词: ``` 请为我生成一个五子棋游戏的代码,其中,棋盘的大小是 1010 ```
2024-12-06
改写提示词:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的提示词:“请帮我生成一个棋盘大小为 10×10 的五子棋游戏的代码。”
2024-12-06
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
ai包括哪些技术
AI 包括以下技术: 1. 发展历程相关技术: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 2. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 此外,对于不会代码但希望了解 AI 的人,需要了解的基础内容包括: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 在汽车行业,AI 的应用案例有: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司的相关开发和测试。 2. 车辆安全系统:AI 用于增强自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统等的安全性能。 3. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:通过分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,以制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等语音助手,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-12-17
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
画分镜头的ai工具推荐4个
以下为您推荐 4 个画分镜头的 AI 工具: 1. Pika:对于奇幻感较强的画面把控较好,自然度高,但真实环境画面易糊,更新的唇形同步功能便捷。 2. Pixverse:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,但生成视频有帧率问题,处理人物时易出戏。 3. Runway:在真实影像质感方面最佳,战争片全景镜头处理出色,控件体验感好,但爱变色,光影不稳定。 4. SVD:整体表现略差,仅在风景片测试中表现较好。 在实际使用中,可根据不同工具对画面的处理能力进行组合使用,例如 Pixverse 擅长物体滑行运动,Runway 可辅助完成有手部特殊运动的画面,需要人物表情自然的画面可用 Pika 生成。
2024-12-22
画分镜头的ai
以下是关于画分镜头的 AI 相关内容: 在利用 AI 拆分镜时,完成前期设定和剧本生成对应的分镜内容后,GPT 虽有结构化的优势,但因分镜较细可能会丢失内容,需人工审核查缺补漏。制作分镜时要考虑视角,如第一人称视角还是第三人称视角,以及视角的切换,使读者更好地理解故事。 设计分镜时要注意详细的定义,例如从本子 311 到 314 的画面,通过视角的来回切换让故事走向更清晰。永远记住,剧本转化为影像时很多表达与文字不同,当前 AI 做不了长镜头,要做减法,分镜指令要明确,如“谁+干什么”“什么东西+在哪里”,不要用难以呈现画面的表述。制作分镜过程要按画面角度思考,以画面驱动文字,设计分镜表时要考虑人物视角、画面描述(可实现的动作、人物表情)。 用 AI 制作分镜时,AI 容易把段落当成一句话或把一个画面拆分成几个镜头,这需要人工干预检查景别、画面描述、前后镜关联。AI 拆分的分镜只能作为参考,需人工再看,否则出图会很痛苦,同时要注意前后镜的关系,避免画面割裂。
2024-12-22
画分镜头脚本的ai工具
以下为一些画分镜头脚本的 AI 工具及相关信息: 1. Claude:分镜提示词的结构为“我要做多长时间的视频+要出多少个分镜+每个分镜包含哪些内容+对输出格式有什么要求”。可将故事脚本改写成指定时长和格式的分镜脚本,例如 30 秒时长、包括序号、场景、景别等内容的广告片分镜脚本,并以 markdown 列表形式输出。其给出的分镜符合奔驰广告的特点,对于 30 秒的简短广告,10 个分镜较为合适,每个分镜平均 3 秒。景别是让 MJ 生图时的提示词内容之一,镜头时长设定了每个分镜的长度,画面内容可用于 MJ 生图,对话旁白可用于生成配音,音乐音效能为创作背景音提供思路。分镜脚本示例可参考: 2. GPTs:以的冰工厂赛道为例,分镜头脚本制作的参考 prompt 为“请帮我把一下(广告故事)设计成(30)秒的可执行分镜脚本,要求使用不同的景别进行画面切换,并给我(100 字)左右的详细画面描述,并每句都加入(高清,真实感,3D,blender)这些文字,整体节奏(顺畅紧张且有趣)”。 3. Anifusion:这是一款基于人工智能的在线工具,可通过输入文本描述生成漫画页面或动漫图像,还提供直观的布局工具、强大的画布编辑器、多种 AI 模型支持等功能。用户对创作的作品拥有完整的商业使用权,可用于独立漫画创作、快速原型设计、教育内容、营销材料等方面。其优点是非艺术家也能轻松创作漫画,基于浏览器无需额外安装软件,具有快速迭代和原型设计能力,并拥有创作的全部商业权利。
2024-12-22
我想要一个AIGC 图像审查领域的专家
以下是关于 AIGC 图像审查领域的相关信息: 如何判断一张图片是否 AI 生成: AI 技术自身带来造假难题,可通过一些网站如 ILLUMINARTY(https://app.illuminarty.ai/)对大量图片数据抓取和分析来判断画作属性,但存在测试中真实摄影作品被误判为 AI 作图的情况,这是因为鉴定 AI 的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 从不同角度看鉴别 AIGC 的需求: 技术出身的朋友多出于对 AI 产物底层逻辑的追溯兴趣,关心能否通过数据检测等手段实现鉴别并应用于创造收益。 产业领域的朋友面对 AI 技术冲击,关注其在工作流中的影响,以求应对可能的裁员风险。 法律背景的朋友认为鉴别 AIGC 对未来著作权法律判定有意义,首例 AIGC 侵权案件悬而未决,需判定 AI 作品中智力投入占比。 最近招聘信息:猿印教育招聘 AIGC 图像生成算法工程师/专家,工作地点在北京五道口附近。简历发送至:stephen.wang@yyinedu.com 。岗位职责包括开发针对性图像生成解决方案、负责模型部署和推理性能优化、推动团队技术水平提升等。任职要求为计算机相关专业本科及以上学历,具备扎实计算机基础知识,熟练掌握 Python 语言和主流深度学习框架,对相关理论和方法有深入理解,具有良好的学习、沟通和团队合作能力。
2024-12-22
如何通过AI构建自己的知识体系,比如通识教育,英语口语,以及子女学习辅导
以下是关于如何通过 AI 构建自己在通识教育、英语口语、子女学习辅导方面知识体系的建议: 通识教育: 1. 把学习任务切割成小单元,利用 AI 构建专属智能体。 2. 定期根据结果反馈调整智能体。 3. 审视学习流程,更多地应用 AI 。 4. 培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 英语口语: 1. 利用智能辅助工具,如 Grammarly 进行写作和语法纠错,改进表达和写作能力。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 使用自适应学习平台,如 Duolingo 获得量身定制的学习计划和个性化内容练习。 4. 与智能对话机器人,如 ChatGPT 进行会话练习和对话模拟,提升交流能力和语感。 子女学习辅导: 1. 对于英语学习,可参考上述英语口语的学习方法。 2. 数学学习方面,使用自适应学习系统,如 Khan Academy 获得个性化学习路径和练习题;利用智能题库和作业辅助工具,如 Photomath 获取问题解答和解题步骤;借助虚拟教学助手,如 Socratic 解答问题、获取教学视频和答疑服务;参与交互式学习平台,如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 需要注意的是,在使用 AI 辅助学习的过程中,要结合传统学习方法,仔细甄别生成的内容,以取得更好的学习效果。
2024-12-22
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
ai绘画的最前沿技术以及效果
AI 绘画的最前沿技术及效果包括以下方面: 技术融合:将艺术与先进的机器学习、深度学习等技术完美结合,如利用卷积神经网络等算法模拟人类创作过程。 打破局限:不再局限于传统手工绘画技巧,通过编程、算法和数据分析等开拓全新创作领域,为艺术家提供灵感,为缺乏绘画技巧的人提供创作机会,使艺术更具民主化和包容性。 效果提升:能够生成更加复杂、逼真和富有创意的图像,涵盖各种风格和题材,从写实到抽象,从风景到人物。 应用广泛:在广告设计、游戏开发、影视制作、建筑设计等领域发挥作用,可快速生成创意概念图、创建场景和角色形象、辅助特效场景和概念设计、帮助构想建筑外观和内部布局等。 色彩与情感表达:着色画通过色彩的丰富性、情感表达、细节和纹理的突出以及创意发挥,增加作品的表现力和独特性。 关键词结构思路:包括基础描述、风格指定、色彩要求和细节强调等方面。 进阶玩法:如使用 MJ 的 Retexture 功能或即梦参考功能,通过写提示词或垫图功能给着色画上色。
2024-12-03
最前沿,最齐全的,最好用的写教案的中文版的AI网站
以下为一些前沿、齐全且好用的写教案的中文版 AI 网站及相关资源推荐: B 站 up 主「PAPAYA 电脑教室」的 Python 入门课,其很多课都很棒且完全免费。 对于大模型的讲解,Andrej Karpathy 讲得很好,油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g ,B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 。 资料库方面,推荐 AJ 和众多小伙伴们共创的飞书文档「🌈通往 AGI 之路」,这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新,链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 。 对于初学者,以下课程也可供参考: 微软的 AI 初学者课程:https://microsoft.github.io/AIForBeginners/ ,发布日期 2023/02/10 。 AI for every one(吴恩达教程):https://www.bilibili.com/video/BV1yL411u7q6 ,发布日期 2023/03/15 。 大语言模型原理介绍视频(李宏毅):https://www.bilibili.com/video/BV1TD4y137mP/ ,发布日期 2023/05/01 。 谷歌生成式 AI 课程:目录 https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e 。 ChatGPT 入门:目录 https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc 。
2024-08-23
最前沿,最好用的写教案的AI工具
以下为一些前沿且好用的写教案的 AI 工具: 1. Good AI:这是一个 AI 驱动的平台,其官网为 https://www.thegoodai.com/ 。它可以帮助用户快速、轻松地生成高质量的文章,由经验丰富的团队支持,是市场上先进、可靠的 AI 写作工具之一。 2. AI Lesson Plans:这是一个创新平台,官网链接为 https://ailessonplan.com/ 。它利用生成式人工智能帮助教育工作者快速高效地创建定制的、适合不同年龄段的教案,具有节省时间、提供学科专业知识支持、可定制教案辅助功能、教科书记忆以及支持多种教案格式等诸多好处。
2024-08-23