Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何利用ai做卷烟营销工商管理类论文的选题

Answer

利用 AI 做卷烟营销工商管理类论文的选题是一个具有挑战性的任务,因为卷烟营销受到严格的法律法规限制。然而,您可以从以下几个方面考虑选题:

  1. 基于 AI 的卷烟市场需求预测模型研究:探讨如何运用 AI 技术分析市场数据,预测消费者对卷烟的需求趋势。
  2. AI 在卷烟品牌形象塑造与传播中的应用策略:研究如何利用 AI 技术优化卷烟品牌的形象塑造和传播方式。
  3. 运用 AI 提升卷烟营销渠道管理效率的研究:分析 AI 技术在优化卷烟销售渠道、提高配送效率等方面的作用。

需要注意的是,卷烟营销必须严格遵守相关法律法规和道德规范。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我要做一个关于ai赋能社会组织的线上培训
以下是关于 AI 赋能社会组织线上培训的相关信息: 社区 AI 讲师招募: 招募背景:随着 AIGC 技术的快速发展,传统企业亟需通过 AI 转型实现降本增效与业务创新。工信部大数据产业人才基地计划为传统行业客户提供 AI 技术培训等服务,现面向社区招募具备实战经验的 AI 讲师与咨询专家。 涉及业务: 公开课:针对 B 端渠道持续展开公益科普,形式免费,部分渠道有经费,内容包括企业端的 AI 应用场景案例和 AI 通识类科普分享,目的是建立与企业渠道的信任及构建收费培训/咨询的转化通道。 线下培训:通过培训转化或直接招生,分成两天一夜、三天两夜的培训班,50 人以上开班,建议 100 人。 咨询服务:针对企业的咨询陪跑服务,包括 AI 营销能力搭建等。 近期安排: 商会公开课:时间暂定 2.22 日,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 重庆区域公开课:时间暂定 2.9 日,线上直播,用户群体是重庆地区相关领导,公开课主题为《Deepseek 引发的商业思考》。 民营经济大讲堂:时间与讲师团商量调整,线下付费,需评估讲师资历和案例,主题包括但不限于 AI 通识培训、AI 企业增长打法等。 省商会公开课:时间待定,线上直播,用户群体是商会会员,公开课主题为《AI 获客》。 SaaS 平台企业公开课:时间待定,线上直播,用户是 SaaS 平台上的企业,主题待定。 杭州市城投线下培训:时间 2 月底,针对城投内部线下培训,付费,主题可与讲师商量。 万人期待的字节 Trae Windows 版正式推出,免费: 重磅福利: AI 编程重磅直播:会邀请在 AI 编程领域取得成绩的嘉宾深度交流,由黄叔亲自主持,还邀请了 Eric 等嘉宾。 AI 编程训练营:WaytoAGI 和 AI 编程社推出为期 2 周左右的共学营,包含图文教程、视频、直播,社群内有老师答疑,完全免费。 相关链接:Trae Windows 版本已经上线,Mac 版本也可下载,官网地址:https://www.trae.ai/
2025-02-18
图片转视频的国产AI推荐
以下是为您推荐的国产图片转视频的 AI 工具: 1. 可灵:由快手团队开发,生成的图像和视频质量高。在视频生成方面,其视频生成质量卓越,画面清晰、连贯且内容丰富,生成速度快,对于国内用户可访问性强。但价格相对较高,重度用户年费可能达几千元,轻度用户有免费点数和较便宜的包月选项。 2. 通义万相:作为国产 AI 工具,在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可。但为符合国内监管要求,某些类型图像无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。 更多相关网站可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-02-18
图片转视频的AI推荐
以下是为您推荐的图片转视频的 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。 另外,在视频转绘制作视频过程中,Topaz Video AI 是一个不错的插件,用于消除视频抖动和运动模糊。其使用方法如下: 解压对应文件,推荐使用绿色版,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频。主界面左边是原视频,右边是待处理视频,下面是对应的视频轨道。右边部分是主要对视频处理的方式,预设部分主要是放大视频、提升画质、提升帧率等。稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 左右,抖动需要开启,次数一般选择 2 保持默认不变。 在制作新年表情包时,生成新年场景可以输入关键词“新年、中国新年、喜庆热闹、恭喜发财”之类的词汇得到合适的新年背景。然后使用可灵 AI 1.6 图生视频工具让场景动起来,抽卡性价比不错,简单效果一般抽两三次即可。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
我现在想根据我的博士论文,想出一个国家社科基金的选题。但是我的博士论文感觉核心不是特别突出,我希望找到一个AI助手,让AI帮我读论文的PDF格式然后总结出一个最合适的选题,有没有推荐的AI工具?
以下是一些关于利用 AI 辅助完成您需求的建议: 1. 先拆解您的博士论文工作流程,搞清楚每个步骤的输入输出和相互关系。 2. 思考论文中的哪些环节可以引入 AI 工具来提效,一切要从业务逻辑出发,AI 是锦上添花,不能本末倒置。 3. 搭建选题库,明确论文的定位(可用 AI 辅助分析),找相关的对标论文和优秀研究。 4. 在写作环节,可用 AI 辅助拆解对标论文,提炼写作技巧,然后根据借鉴的技巧结合自身特色列出写作大纲,并使用 AI 优化大纲、查找资料、润色文章,但核心内容要自己完成,不能过度依赖 AI。 5. 起标题与配图方面,用 AI 辅助批量生成标题,再自己修改优化,评估标题是否足够吸引眼球,让 AI 分析论文提供配图建议,去免费图库搜索配图。 6. 养成习惯与总结,做每件事前都思考 AI 能提供什么帮助,把整套流程实践几次,形成肌肉记忆,不断打磨完善属于自己的 AI 辅助流程,同时警惕过度依赖,AI 只是辅助,核心能力要靠自己。 目前常见的可用于辅助您的 AI 工具如 ChatGPT 等,但具体的选择还需根据您的实际需求和使用体验来决定。
2025-02-16
有哪些找选题的好用AI工具
以下是一些找选题的好用 AI 工具及相关方法: 1. 明确定位:可以用 AI 辅助分析受众特征。 2. 找对标:用元宝快速搜索相关账号和文章。 找对标账号和文章是选题的重要步骤。对标账号即与您定位类似且做得更好的公众号,通过搜索关键词找到对标账号,查看其高阅读量文章,借鉴思路但不照搬内容,同时关注评论区发现读者痛点和需求。 3. 即时记录:用微信群这个工具记录精彩选题。 4. 系统整理:使用飞书文档工具整理选题库。
2025-01-17
我正在找能够帮我生成优质短视频选题的AI
以下是为您提供的关于能够生成优质短视频选题的 AI 的相关信息: 在选题方面,找选题是一个学习和积累的过程。就像大语言模型通过监督学习从优秀文本示例中学习一样,我们人类也需要从大量成功的案例中培养写作感觉。例如,在刷大号文章时,要分析其选题思路、文章结构和表达方式,学习但不照搬,融会贯通形成自己的风格。不主动学习容易陷入低水平重复。 在视频内容生产方面,有技术可打通传统制作数字人口播视频的多个环节,为企业提供包括选题生成等定制化服务,解决获客难题。同时,还设计了提示词工具和创作的标准操作流程,帮助学员写出成功的故事。 在工作流方面,有人分享了目前使用 AI 的心得,如起床让 AI 排 TODO 优先级,工作中有傲娇 AI 小助理加油,重点事项分成 bot 团队组,包括内容选题、标题、框架、扩写等,并不断优化 bot,将知识库和 Prompt 资产放入飞书维护,未来还可能将公司业务搬入飞书等。
2025-01-17
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
抖音选题智能体
以下是关于抖音选题智能体的相关内容: 1. 多智能体 AI 搜索引擎方案详情: 第一步,快速搜索补充参考信息:根据用户任务<调研市场上主流的开源搜索引擎技术架构>,使用搜索工具 API WebSearchPro 补充更多信息,参考文档:https://bigmodel.cn/dev/api/searchtool/websearchpro 。包括请求代码和搜索结果。 第二步,用模型规划和分解子任务:使用大模型 GLM40520 把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。参考 API 文档:https://bigmodel.cn/dev/api/normalmodel/glm4 。JSON 格式处理参考:https://bigmodel.cn/dev/howuse/jsonformat 。包括请求代码和拆分问题(格式可解析成 JSON OBJECT)。 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索和自主分析多轮搜索任务的能力。智能体 API 的调用方式参考文档:https://bigmodel.cn/dev/api/qingyanassistant/assistantapi 。智能体 id:659e54b1b8006379b4b2abd6 ,简介:连接全网内容,精准搜索,快速分析并总结的智能助手。包括请求代码和子问题搜索结果。 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。智能体 API 的调用方式参考文档:https://bigmodel.cn/dev/api/qingyanassistant/assistantapi 。智能体 id:664e0cade018d633146de0d2 ,简介:告别整理烦恼,任何复杂概念秒变脑图。包括请求代码和总结并生成脑图。 2. 汽车栏目主持人(零壹老师)智能体经验分享: 创作视角以用户真实需求为视角,分析车主遇到车辆问题时的各种解决方案及存在的问题,如自行搜索短视频或文章、门店咨询或投诉、找熟人、问专家等方式的优缺点。 智能体方案:角色为汽车栏目主持人(博主),抖音账号为汽车人一零,功能为 24 小时在线的汽车问答专家,随问随答随搜,知无不言。 3. 智能体的相关知识: 智能体的应用:在自动驾驶、家居自动化、游戏 AI、金融交易、客服聊天机器人、机器人等领域扮演重要角色。 智能体的设计与实现:通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。 总结:智能体在现代计算机科学和人工智能领域是基础且重要的概念,通过自主感知和行动在广泛应用领域发挥重要作用,其技术不断发展和应用正在改变生活方式和工作模式。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-13
AI论文选题
以下是关于 AI 论文选题的一些建议和相关案例: 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据,使用 AI 数据分析工具处理和解释。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:确保原创性并进行最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 相关论文案例: 1. 《ScreenAI:A VisionLanguage Model for UI and Infographics Understanding》 作者:Gilles Baechler,Srinivas Sunkara,Maria Wang,Fedir Zubach,Hassan Mansoor,Vincent Etter,Victor C˘arbune,Jason Lin,Jindong Chen,Abhanshu Sharma 核心观点与亮点:介绍了专门用于理解和处理用户界面和信息图表的视图语言模型 ScreenAI,通过结合 PaLI 架构和 pix2struct 的灵活拼贴策略,在独特数据集混合上训练,在 UI 和信息图表理解任务上取得新最佳性能。 链接: 2. AI+教育相关案例: 医疗:健康生物制药的研究 AI 洞察:一线医生如何实际使用 ChatGPT 笔记:与 AI+教育前辈聊天 数学:OpenAI 发表论文大幅提高 ChatGPT 的数学准确性
2024-12-07