直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大小模型协同有哪些数据

回答

大小模型协同的数据来源广泛且多样,主要包括以下方面:

  • 大模型方面:
    • 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。
    • 像 GPT-3 这样的大模型参数众多。
    • 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。
  • 小模型方面:
    • 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。

大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

十七问解读生成式人工智能

“小模型”确实有其优势,尤其是在特定任务上表现得非常出色。比如,如果你训练了一个专门识别猫🐱或狗🐶的模型,它在这个任务上可能非常精准。然而,这个模型就无法用于其他任务(因为用来训练模型的数据主要是由猫猫狗狗的照片组成的)。而“大模型”则不同,它像一个多功能的基础平台(有时也被称为“基座模型”)。大模型可以处理多种不同的任务,应用范围非常广泛,并且拥有更多的通识知识。这就是为什么尽管“小模型”在某些特定领域内表现优异,我们仍然需要“大模型”的原因:它们能够在更广泛的场景中提供支持和解决问题。[heading1]问题十一、大模型拥有无限知识吗?[content]大模型并不拥有无限知识。大模型的知识来源于它们在训练过程中接触到的数据,而这些数据是有限的。虽然大模型可以处理和生成大量的信息,但它们的知识来自于它们所训练的数据集,这些数据集虽然庞大,但仍然是有限的。因此,大模型只能回答它们在训练过程中见过或类似的问题。大模型在训练之后,其知识库不会自动更新。也就是说,它们无法实时获取最新的信息,除非重新训练或通过其他方式更新模型。大模型在某些特定或专业领域的知识可能不够全面,因为这些领域的数据在训练集中可能较少。[heading1]问题十二、大型语言模型的运作机制是什么?[content]大型语言模型的运作机制主要是通过大量的数据训练来学习语言的结构和模式,然后根据输入生成相应的文本。这些模型通过阅读大量的文本数据,学习到语言中的词汇、语法、句子结构以及上下文关系。当你给它一个输入时,它会根据这些学习到的知识生成一个连贯的回答。所以它永远在猜测下一个字符将要生成什么,类似于词语接龙游戏。

Gemini report 中文翻译

Gemini模型是在一个既包含多模态又包含多语言的数据集上进行训练的。我们的预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。我们使用SentencePiece分词器(Kudo和Richardson,2018),发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。例如,我们发现Gemini模型可以高效地标记非拉丁脚本,这反过来可以提高模型质量以及训练和推理速度。训练最大模型所使用的标记数量是根据Hoffmann等人(2022)的方法确定的。为了在给定的推理预算下提高性能,较小的模型被训练了更多的token,类似于(Touvron等人,2023a)提倡的方法。我们对所有数据集进行过滤,使用启发式规则和基于模型的分类器。我们还进行安全过滤以删除有害内容。我们从训练语料库中筛选出我们的评估集。通过对较小的模型进行消融实验,确定了最终的数据混合和权重。我们在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。我们发现数据质量对于一个高性能的模型至关重要,并且相信在寻找预训练的最佳数据集分布方面还存在许多有趣的问题。

其他人在问
大小模型协同有哪些设计,具体应用有哪些呢?
大小模型协同的设计主要包括以下方面: 1. 大型模型方面: 大型语言模型:专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,在更多样化的任务中应用。 2. 小型模型方面:通常是被设计来完成特定任务的。 其具体应用包括: 1. 人机协同模式: 模式一:以人为主导,大模型提供建议(copilot 阶段),如同副驾驶,开车时提供建议,决定权在人手中。 模式二:人和大模型协同工作,合作完成同一个工作(embedding 阶段),在实际工作场景中,一些小环节由大模型完成,提高效率。 模式三:人指挥大模型工作(数字员工阶段),但此阶段目前少见,大模型还不能完全独立完成具体工作,可能是工程或大模型能力欠缺导致。 当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
2024-11-13
协同办公系统推荐
以下是根据你的需求为你生成的文章: 协同办公系统推荐 协同办公系统是一种将团队成员、流程和工具集成到一个平台上的软件,旨在提高团队的工作效率和协作能力。下面是几种常见的协同办公系统推荐: 1. 产品管理工具:如 Aha!、ProductPlan 等,帮助产品经理从概念到发布管理整个产品生命周期。 2. 协作工具:如 Google Docs、Microsoft Office 365,支持团队协作和文档共享。 3. 项目管理软件:如 JIRA、Trello,用于任务分配和进度跟踪。 4. 市场研究工具:如 Google Trends、SEMrush,分析市场趋势和用户行为。 5. 用户调研工具:如 SurveyMonkey、Typeform,收集用户反馈和需求。 6. 数据分析工具:如 Tableau、Power BI,对市场数据进行可视化分析。 7. 思维导图软件:如 MindMeister、XMind,帮助组织思路和概念。 8. 流程图软件:如 Lucidchart、Visio,绘制产品功能和流程图。 9. 文档模板:使用现成的 MRD 模板作为起点,可以在网上找到多种 MRD 模板。 10. 版本控制工具:如 Git、SVN,管理文档的不同版本。 使用这些协同办公系统可以提高团队的工作效率和协作能力,同时也有助于提高团队之间的沟通效率和文档的可管理性。
2024-05-23
如何用langchian加载本地模型
要使用 Langchain 加载本地模型,您可以按照以下步骤进行: 1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。 2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量,使用文本向量模型 bgem3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 在整个过程中,还需要了解以下相关知识: 1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
2024-11-23
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
如果我想让快速提取网页内容,并将其中的数据提取为表格或文档,我应该使用哪一款AI软件?
以下是一些可以帮助您快速提取网页内容并将数据提取为表格或文档的 AI 软件及相关建议: 1. 利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。但要注意,信息收集过程中,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 对于数据处理,可以借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 3. 分析与撰写时,通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 此外,Mistral 发布了全新聊天应用,基于 Pixtral Large 124B 多模态模型,支持网络搜索、写作画布与 Flux Pro 图像生成功能。其网络搜索工具可获取最新信息,写作画布功能适合文档创作与协作,高质量图像生成工具 Flux Pro 支持免费使用。您可以通过在线体验: 了解更多。
2024-11-22
如何画热力图,帮助我们分析数据相关系数
以下是关于如何画热力图来分析数据相关系数的步骤: 1. 完成前面的 MMM 运行步骤。 2. 进行关联性分析,可绘制热力图(颜色可自行调整)。 3. 计算相关性,注意在真实场景中,若出现负相关性,需考虑是否缩减投入或进行其他决策。 4. 模型流程主要在前几步,后面的可视化和其他分析自由度较高。 您可以在 Colab 上的部署地址(https://colab.research.google.com/drive/1vzMbUuGsaFHlnl9CKFXgxXn8aqWaw60I?usp=sharing)直接进行测试,并欢迎提出新的优化意见。
2024-11-22
如何将知识库里的文件进行分类清晰数据,使其变得更加智能化
以下是关于如何将知识库里的文件进行分类清晰数据,使其变得更加智能化的方法: 1. 在线知识库 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 点击添加 Bot,并在调试区测试效果。 2. 本地文档 注意拆分内容,提高训练数据准确度,将海报的内容训练到知识库里面。 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大的章节名称内容放进来,章节内详细内容依次按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用 点击发布,确保在 Bot 商店中能够搜到。 4. 飞书知识库 在飞书里面选择对应的文件夹,一次最多智能选择 20 个文件(若文件大于 20 个可多建几个知识库)。 可以选择自动进行数据清洗,数据清洗是把数据进行类结构化整理,内容中的图片资料也会保留。 测试对话,基本反馈正常,目前 coze 存在不稳定版本,需要不断调试完善。 5. Excel 知识库 可以增加其他形式的知识库。 上传表格的知识库不要过于复杂,不要有合并表格情况,同时系统不认不同的 Sheet。 数据处理完成会显示 100%进度,加工出来的数据,点击添加 Bot,就增加到知识库中,然后测试发布和返回。 6. 网页知识库 有自动采集和手动采集两种方式,手动采集需要安装插件,操作稍微有点小复杂。 选择批量添加,写入画小二官网的地址,可根据需求添加自己的网站。 将网站所有的页面都扫描出来,点击确认,将全站数据解析并保存到知识库里面,按照默认自动清洗数据。 7. 创建知识库并上传文本内容 本地文档:在文本格式页签下,选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括分段标识符、分段最大长度、文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址)。单击下一步完成内容上传和分片。
2024-11-21
帮我生成一个个人的职业目标为数据分析师,职业规划为想要找到一个计算机行业类的公司,我的优势是社交方面和处理数据方面很强,我的2弱势是不太可以创新
以下是为您生成的以数据分析师为职业目标,且希望在计算机行业公司工作的职业规划建议: 首先,鉴于您在社交和处理数据方面的优势,您可以积极利用这两点。在社交方面,主动参与行业相关的社交活动、线上论坛或社群,扩大人脉资源,这有助于您获取更多的行业信息和潜在的工作机会。在处理数据方面,不断提升自己的专业技能,例如学习更高级的数据处理工具和技术,以提高工作效率和质量。 对于您在创新方面的弱势,建议您多关注行业内的创新案例和趋势,通过学习和模仿来逐渐培养创新思维。可以参加一些创新思维的培训课程或者阅读相关的书籍。 在求职过程中,有针对性地投递计算机行业中对数据分析师有需求的公司。准备一份精心制作的简历,突出您在社交和数据处理方面的优势,并诚实地提及您在创新方面的不足以及您为改进所做的努力。 进入公司后,持续学习和提升自己,与团队成员保持良好的沟通和合作,不断积累项目经验,逐步提升自己在数据分析领域的专业能力和影响力。
2024-11-20
数据中心运维服务的智能体构建
以下是关于数据中心运维服务智能体构建的相关内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流(如整理入库、选择内容)添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,能在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。 智能体在品牌卖点提炼中的应用 搭建一个智能体帮助提炼卖点: 1. 确定智能体的结构:按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体: 以品牌卖点提炼六步法为核心的流程,包括探索、排列、抽取、收敛、确认、应用流程。 加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续品牌卖点应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。
2024-11-19
ai爬数据
以下是为您提供的关于 AI 相关的一些信息: 网页抓取方面:过去两周出现了许多 AI 驱动的网页信息自动抓取工具。当前用 Gen AI 做网页抓取并非主流技术方案,但具有能更好地理解分析非结构化数据、实现更精准抓取等优势。比较受欢迎的 AI 网页抓取小工具包括:Hexomatic(https://hexomatic.com/)、WebscrapeAI(https://webscrapeai.com/)、Kadoa(https://www.kadoa.com/)。 聊天机器人方面:6 月访问量的排名情况为,ChatGLM 智谱清言排名 16,访问量 364 万,相对 5 月变化 0.11;MyShell 排名 17,访问量 338 万,变化 0.003;讯飞星火排名 18,访问量 272 万,变化 0.018;ciciai 排名 19,访问量 252 万,变化 0.14;DeepSeek 排名 20,访问量 205.4 万,变化 0.249。 Prompts 方面:4 月访问量的排名情况为,Lexica 排名 1,访问量 349 万,相对 3 月变化 0.039;Promptchan 排名 2,访问量 279 万,变化 0.203;prompthero 排名 3,访问量 130 万,变化 0.312;提示工程指南排名 4,访问量 81.5 万,变化 0.291;LetsView Chat 排名 5,访问量 66 万,变化 0.087;AIPRM 排名 6,访问量 58 万,变化 0.521;PromptBase 排名 7,访问量 54 万,变化 0.119;ChatGPT Cheat Sheet & Quick Reference 排名 8,访问量 45.8 万,变化 0.048;Prompt Hunt 排名 9,访问量 42 万,变化 0.055;Learn Prompting 排名 10,访问量 36.1 万,变化 0.284。
2024-11-19