Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想通过dify调整一个客服系统,但是总是不能很好的把知识库里的数据回复完整?

Answer

使用 Dify 构建知识库的具体步骤如下:

  1. 准备数据:
    • 收集需要纳入知识库的文本数据,包括文档、表格等格式。
    • 对数据进行清洗、分段等预处理,确保数据质量。
  2. 创建数据集:
    • 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。
    • 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。
  3. 配置索引方式:
    • Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。
    • 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。
  4. 集成至应用:
    • 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。
    • 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。
  5. 持续优化:
    • 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。
    • 定期更新知识库,增加新的内容以保持知识库的时效性。

总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。需要注意的是,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Dify 构建知识库的具体步骤

使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别

Others are asking
请给我推荐几个带有知识库引用的dify案例
以下是使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 以下是一些带有知识库引用的 Dify 案例:
2025-01-30
Dify如何调用飞书智能表格
Dify 调用飞书智能表格的方法如下: 1. 部署完成后,可以通过以下方式使用飞书·稍后读助手: 得益于飞书 app 的多平台支持,在电脑、手机端通过飞书机器人与稍后读助手进行对话。 直接在 Coze 商店中与 bot 进行对话。 如果还选择了部署到微信服务号、订阅号,也可以通过这些渠道调用 bot。 2. 设置稍后读存储地址: 首次使用,按以下步骤操作: 访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 另外,还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整稍后读存储位置。 3. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据。授权通过后,再次输入需要收藏的页面链接,即可完成收藏。 目前部分页面链接可能会小概率保存失败,暂未定位原因。 4. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 此外,关于 Dify 在微信上的调用,可参考以下信息: GitHub: https://github.com/zhayujie/chatgptonwechat Gitee: https://gitee.com/zhayujie/chatgptonwechat 这里先暂时不过多介绍 Dify,它跟 AutoGPT、MetaGPT、FastGPT 等都是可以自己构建 Agent、工作流的 LLM 应用开发平台。AM 就是搭建在 Dify 上面的。 说回 LlamaEdge,可以自建一个 API 扩展来实现调用上面的 FLUX.1 API Server(套娃)。 API 扩展说明,可以查看:https://docs.dify.ai/zhhans/guides/extension/apibasedextension,但貌似 0.8.3 的版本不再使用了(dify 里面有不少功能更新缺陷或版本冲突,所以使用时需要自行修改或提交 PR)。 也可以引入项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。dify_image.py 后续会更新到代码仓库中。 图片服务器,很简单,分别写一个 Flask app 程序和一个 html: app.py template/index.html 以上代码都可以由 Phind、Copilot、Cursor、Zed + ollama + 一个代码大模型代劳,但架构感觉整复杂了不够优雅,后面整理好打包一个解决方案再提交一个 repo。
2025-01-24
dify编排框架是什么意思
Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势: 1. 集各家所长,在用户体验方面表现出色。 2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。 3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。 4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。 在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
Dify引用飞书智能表格
以下是关于 Dify 引用飞书智能表格打造专属 AI 智能体的相关内容: 首先是逐步搭建 AI 智能体: 1. 设计 AI 智能体架构:构思整个架构,规定稍后读阅读清单的元数据。新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(阅读状态,收藏的默认态为“仅记录”)、“发布日期”、“收集时间”。为方便跟做,可直接复制准备好的模板: 2. 搭建整理入库工作流:这是支撑整个 AI 稍后读服务的前置流程。首先新建工作流「url2table」,根据弹窗要求自定义工作流信息。工作流全局流程设置如下: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址,将飞书多维表格链接存储在 bot 的变量中,在工作流运行时进行引用。 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2025-01-21
如何使用dify
使用 Dify 主要包括以下步骤: 1. 构建知识库: 准备数据:收集文本数据,包括文档、表格等格式,并进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的数据,并编写良好的描述。 配置索引方式:Dify 提供三种索引方式,如高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,持续优化知识库内容和索引方式,定期更新增加新内容。 2. 部署网站: 云服务版本:直接在官网 dify.ai 上注册账号使用。 部署社区版:开源可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台。 3. 特点和优势: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为个人研究、创业团队、企业等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究可单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-01-20
dify的使用教程
以下是 Dify 的使用教程: 1. 构建知识库: 准备数据:收集文本数据,包括文档、表格等格式,并进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好的描述。 配置索引方式:Dify 提供三种索引方式,如高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式进行优化和迭代,定期更新知识库。 2. 部署网站: 云服务版本:直接在官网 dify.ai 上注册账号使用。 部署社区版:开源,可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台。 3. 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-01-18
有其他 和WaytoAGI 知识库类似的网站吗
目前,与 WaytoAGI 知识库类似的网站可能有一些,但具体的推荐需要根据您的特定需求来确定。WaytoAGI 知识库提供了和 AI 知识库对话、集合精选的 AI 网站、精选提示词、呈现知识库精华内容等功能。它是一个由开发者、学者和有志人士参与的学习社区和开源的知识库,在没有推广的情况下,一年就有超 70 万用户和千万次访问量,社群有很多活动,口号是让更多的人因 AI 而强大。如果您能更明确您对类似网站的具体需求,比如侧重的功能、领域等,我可以为您提供更精准的推荐。
2025-01-30
waytoagi知识库的对话功能是如何开发的
waytoagi 知识库的对话功能开发涉及以下方面: 1. 提示词的运用:建议从最佳实践中的收录内容开始了解,像李继刚老师的结构化提示词很有意思,使用此类提示词能让模型给出更优质、完整的答案。操作过程中有很多有趣的提示词,如“酷老师”“抬杠高手”等,可点开并复制,将其丢进大源模型对话会有不同效果。近期提示词有升级,李金刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 2. 基于飞书 aily 搭建:在飞书 5000 人大群里内置了智能机器人「waytoAGI 知识库智能问答」,它能自动问答、进行知识搜索、提供文档引用、开展互动教学、更新最新动态、促进社区互动、实现资源共享以及支持多语言问答。用户在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 3. 解决知识库使用问题:整个知识库内容庞大,传统搜索基于关键词及相关性存在不足,需要用更先进的办法如 RAG 技术来解决,在群中提供快速检索信息的方式,使用更加便捷。
2025-01-28
如果我要整理多年收藏的网页变成不同科目的知识库,哪些AI工具最适合?
以下是一些适合将多年收藏的网页整理成不同科目的知识库的 AI 工具: 1. 工具入门篇(Prompt):现成好用的 Prompt。适用人群为完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白。文章链接:。简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 2. 工具入门篇(AI Agent):Agent 工具 小白的 Coze 之旅。适用人群为完全没有编程基础,但对 AI 已有一点概念的小白。文章链接:。简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它。 3. 工具入门篇(AI Pic):现在主流的 AI 绘图工具网站。适用人群为完全没接触过 AI 出图、只是听说过的小伙伴。文章链接:。简要说明:为纯粹的小白提供一个工具列表和扫盲。 4. 工具入门篇(AI Tools):数据工具 多维表格小白之旅。适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。文章链接:。简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 5. 工具入门篇(AI Code):编程工具 Cursor 的小白试用反馈。适用人群为 0 编程经验、觉得编程离我们很遥远的小白。文章链接:。简要说明:通过 AI 工具对编程祛魅,降低技术壁垒。 6. 工具入门篇(AI Music):音乐工具 Suno 的小白探索笔记。适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。文章链接:。简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。
2025-01-27
如何搭建一个知识库自动检索的功能
搭建知识库自动检索功能主要包括以下步骤: 1. 文本预处理:去除无关字符、标准化文本(如转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型如 Word2Vec、GloVe、BERT 等完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示,以捕捉句子的上下文信息。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。 在知识库检索阶段: 1. 文档向量化:将知识库转化为一个巨大的向量库。在大模型的检索中,依靠问题在空间中的向量位置,去寻找距离这个向量最近的其他词句,然后完成检索。 2. 配置知识库: 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传相关文档。 建立索引:进入,根据引导创建新的知识库,并选择上传的文件,其他参数保持默认。选择向量存储类型时,如果希望集中存储、灵活管理多个应用的向量数据,可选择 ADBPG。 引用知识:完成知识库的创建后,返回进入到创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt 中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。 此外,因为利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。RAG 应用可抽象为 5 个过程:文档加载(从多种不同来源加载文档)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。文本加载器则是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-26
飞书知识库ai机器人
以下是关于飞书知识库 AI 机器人的相关信息: 简介:在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 aily 搭建的。() 如何使用:在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 功能: 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人的分享:2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 背后的技术:「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 关于“我是谁”:是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 使用方法: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 做问答机器人的原因: 整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。 传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。 作为一个 AI 知识库,需要用更先进的办法来解决:RAG 技术。 在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。
2025-01-24
客服机器人
以下是关于客服机器人的相关信息: Token 在客户服务机器人中的应用:一家大型电信公司部署了基于 Token 化的客户服务机器人来处理用户查询,如账单问题、服务中断等。机器人通过分析用户已 Token 化的问题,快速提供正确答案或将问题转给适当的服务部门。 共学快闪第三期微信机器人相关: 可以在平台创建自己的 bot,并互相交流和沟通。新客户可以使用 COS 作为 API 来搭建。 举办了 cost 活动,包括图文赛道和创意赛道,参与者可以将自己的作品投稿参赛,还有奖金。 提出了 helpfulness、拟人性、语言流畅度和优雅性、OC 等评估指标,并讨论了如何通过机评和人评混合的方式进行评估。同时,也提到了一些相对主观的指标,如后验的对话轮速、对话轮次、用户的使用留存和频率等。 提供了一个问题汇总文档,记录了 119 条常见问题和解决方案。 微信机器人的搭建过程是一步一步的,可能会遇到一些卡点,最早的时候会有通信下老金、奥服等在群里面帮大家去做回复。 机器人可以实现一些小的商业化目的,比如搭建客服机器人、进行群管理等。 微信机器人的课程是全免费的,梦飞带大家完成的课程已经放在了知识库,大家可以扫码直达知识库进行学习。 prompt 属于商业机密,无法分享。赵悦给大家普及了一个知识,大模型的回复速度与输出的字符数据相关,只要输出字符数比较偏短,大模型的速度会很快。 开发航空客服 AI:聊天机器人工作得很好,可通过 LangSmith 跟踪来检查它的最新运行情况。但设计存在潜在问题,对单个提示施加了很大压力。在下一节中将展示如何通过根据用户的意图将用户引导至专业代理或子图,来更精确地控制不同的用户体验。
2025-01-27
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
智能客服
以下是关于智能客服的相关信息: GPT 智能客服: GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。 GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。其实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库(knowledge)和问题(prompt)一起做 embedding,扔给 LLM 作答。 扣子平台: 扣子是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在扣子平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。而且可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与搭建的 Bot 聊天。其官网地址:https://www.coze.cn
2025-01-25
章鱼AI客服怎么样
很抱歉,上述提供的内容中没有直接关于章鱼 AI 客服的相关信息。但可以为您介绍一些关于 AI 客服的一般性知识。 AI 客服通常是基于大型语言模型和其他技术实现的智能实体,其核心功能在于自主理解用户的问题、进行规划决策并执行回复任务。 AI 客服可能包含以下几个概念: 1. Chain:通常由多个步骤组成,每个步骤可以接受输入变量并产生输出变量,大部分由大语言模型完成。 2. Router:通过一些判定(甚至可以用语言模型判定),让客服走向不同的处理流程。 3. Tool:可以进行的一次工具调用,如互联网搜索、数据库检索等。 一般的 AI 客服系统可能需要多个 Agent 协同工作,例如: 1. Responser Agent:主客服,用于回复用户。 2. Background Agent:背景客服,用于推进角色当前状态,如进入下一个剧本,抽检生成增长的记忆体等。 3. Daily Agent:每日客服,用于生成剧本、配套图片以及每日朋友圈等。 这些 Agent 可能会每隔一段时间运行一次,分析历史对话,变更人物关系、反感度等,并按照时间推进人物剧本,还有概率主动聊天。 由于没有章鱼 AI 客服的具体内容,以上是关于 AI 客服的一些常见情况,希望对您有所帮助。
2025-01-17
将Agent集成应用到公司网站、网站客服
将 Agent 集成应用到公司网站、网站客服可以按照以下步骤进行: 1. 搭建示例网站 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY。其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 智能体(Agent)的相关知识: 1. 智能体的应用: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 2. 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 一些好的 Agent 构建平台包括: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-07
将Agent应用到微信公众号、企业客服
将 Agent 应用到微信公众号和企业客服可以参考以下内容: Dify 接入企业微信的步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并进行对话测试。 5. 把工作流编排聊天助手接入微信,包括创建知识库、导入知识库文件、创建工作流编排聊天助手应用、设置知识检索节点和 LLM 节点、发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 基于 COW 框架的 ChatBot 在企业微信的实现步骤: 1. 准备:企微的接入方式是通过企业微信应用完成,只能企业内部人员使用,暂时无法在外部群中使用。需要的资源包括一台服务器(海外服务器,有国内代理接口的话可使用国内服务器)、注册一个企业微信(个人也可注册,只是无法认证),如果是认证的企业微信,还需要一个对应主体备案的域名。 2. 创建企业微信应用:首先在说明。
2025-01-07
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22
我想根据提问的问题关键词设置自动回复
以下是关于根据提问的问题关键词设置自动回复的相关内容: Apple Intelligence 中各种智能应用的提示词已曝光,存在“/System/Library/AssetsV2/com_apple_MobileAsset_UAF_FM_GenerativeModels”目录下。作为邮件助理,可识别邮件中的相关问题并提供简短回复片段,以 JSON 格式呈现输出,包含问题和答案的字典列表。若邮件无提问则返回空列表。 安仔:Coze AI 机器人对接微信群的疑问解答,包括放行端口、Bot ID、微信账号被封、服务器是否需一直开着、不懂编程能否配置好、配置中遇到问题、为何配置多个前缀触发回复等问题及相应答案。 飞书 5000 人大群内置智能机器人“waytoAGI 知识库智能问答”,基于飞书 aily 搭建。使用时在群里发起话题时,它能自动问答、知识搜索、文档引用、互动教学、更新最新动态、促进社区互动、资源共享、支持多语言问答。
2024-11-18
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
回复限制和上下文限制是一样的吗
回复限制和上下文限制不是一样的概念。 上下文(英文通常翻译为 context)指对话聊天内容前、后的内容信息。使用时,上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 回复限制通常是指对模型生成回复内容的各种约束条件,例如让模型基于一个固定知识片段去回复内容,为避免模型产生幻觉而对提示词进行优化,将 Constraints 前置以更好地控制模型行为。例如在一些测试中,会出现模型在没有上下文时不回复,按照提供的知识准确回复但透露原文,知识片段大小影响回复,以及有错误知识片段时不回复等情况,这表明模型在处理用户输入时会进行一定程度的推理和验证,生成回复时会考虑多种因素,包括上下文的准确性、问题的合理性以及模型内部的约束机制等。
2024-11-15