Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想通过dify调整一个客服系统,但是总是不能很好的把知识库里的数据回复完整?

Answer

使用 Dify 构建知识库的具体步骤如下:

  1. 准备数据:
    • 收集需要纳入知识库的文本数据,包括文档、表格等格式。
    • 对数据进行清洗、分段等预处理,确保数据质量。
  2. 创建数据集:
    • 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。
    • 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。
  3. 配置索引方式:
    • Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。
    • 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。
  4. 集成至应用:
    • 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。
    • 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。
  5. 持续优化:
    • 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。
    • 定期更新知识库,增加新的内容以保持知识库的时效性。

总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。需要注意的是,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Dify 构建知识库的具体步骤

使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别

Others are asking
dify平台
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。 部署选项:提供云服务和本地部署,满足不同用户需求。 优势:开源特性确保对数据完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。 适用场景:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-27
dify平台入门
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:为用户提供直观界面,快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。 部署选项:提供云服务和本地部署,满足不同需求。 优势:开源特性确保对数据完全控制和快速产品迭代,设计理念注重简单、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。 建议:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-26
dify部署
Dify 是一款开源的大语言模型应用开发平台,以下是关于 Dify 部署的相关信息: 1. 运行 Dify: 本地需先支持 Docker 和 Git 的依赖环境。 在对应的终端直接执行相关代码即可运行。 2. 添加模型: Dify 启动成功后,通过浏览器访问 ,新建账号密码。 在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型为 deepseekr1:7b,基础 URL 为 ,并添加 Text Embedding 模型。 3. 部署方式: 可参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 若使用云服务器 Docker 部署,可重装服务器系统,安装宝塔面板,进行防火墙端口放行和获取宝塔面板账号密码等操作,然后安装 Docker 用于 Dify 部署。 部署过程中需注意确保每一步成功后再进行下一步,如遇到问题可咨询相关技术支持或向 AI 寻求帮助。
2025-02-23
difyd本地部署
Dify 是一款开源的大语言模型应用开发平台,具有以下特点和部署方式: 特点:融合后端即服务和 LLMOps 理念,内置关键技术栈,支持数百个模型,有直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,提供易用界面和 API,非技术人员也能参与。 本地部署: 依赖环境:本地需先支持 Docker 和 Git。 运行:在对应终端执行相关代码。 添加模型:启动成功后,浏览器访问,新建账号密码,在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型 deepseekr1:7b 及 Text Embedding 模型。 云服务器部署:参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,在宝塔面板终端安装,注意处理可能出现的 80 端口被占用等问题。可选择国内模型,如智谱 ai,获取钥匙并复制保存,创建应用等。 Dify 在私人定制类 AI 应用中表现出色,安装过程简单,熟练用户约 5 分钟可完成本地部署,集成依赖到一键部署指令。它支持本地和云端部署,云端有包月套餐,但访问可能需特殊方法。本地部署需自行处理模型接入等问题,构建个人知识库要考虑多种因素。用户可根据需求、技术能力和预算选择。
2025-02-23
dify网站
Dify 网站有以下两种部署方式: 1. 云服务版本: 直接在官网 dify.ai 上注册账号使用。 2. 部署社区版: 开源,可商用,但不能作为多租户服务使用,对个人使用无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元),本地也可部署,但较折腾。 方案一:腾讯云一键部署 优惠:打开腾讯云官网,左上角【最新活动】进入,新老用户均可享受。 购买:Dify 社区版官方要求 2 核 4G,境内境外根据需求选择,境内 159 一年。 创建:选好后,选择【使用应用模板创建】【AI】,其他按需选择,不选额外花钱的。 使用:服务器初始化完成,在控制台服务器中查看,若显示运行中则初始化成功。复制公网 IP 到浏览器中加上 /apps 回车,进入安装页面,设置管理员账号密码,正常情况下会以管理员身份进入网站,配置模型服务即可使用。 方案二:云服务器 Docker 部署 腾讯云一键部署存在问题,如买服务器后能否做其他事、Dify 更新频率高升级麻烦等。 装系统:安装宝塔面板(可视化服务器管理),登陆凭证选自定义密码。 登陆:控制面板服务器查看详情,找到【应用信息】卡片,点击管理应用,放行防火墙端口,获取宝塔面板的账号密码。 Docker 安装:登陆成功 bt 面板后,点击左侧菜单栏【Docker】,按提示操作。
2025-02-23
如何学习 Dify
以下是关于学习 Dify 的相关内容: 1. 部署方面: 可通过云服务器、dify、智能微秘书来免费搭建微信机器人。相关命令在宝塔面板的终端安装,如在/root/dify/docker 目录下的 dockercompose 文件,可通过询问 AI 了解命令含义。若遇到问题,如 nginx 容器无法运行,可将终端输出的代码粘贴给 AI 查找原因,可能是 80 端口被占用,可按 AI 方法解决。 完成部署后,在浏览器地址栏输入公网 IP(去掉宝塔面板地址栏显示的:8888),随便填邮箱密码建立知识库,选择模型(国内模型有免费额度,如智谱 ai 可通过手机号注册获取 API keys 并复制),创建应用并测试。 2. 平台特点: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面构建和部署生产级别生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能监控和优化应用性能,提供云服务和本地部署选项,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队、企业和技术爱好者提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究推荐单独使用,企业级落地项目推荐多种框架结合。
2025-02-23
从知识库中查询与:DeepSeek相关的热门资讯信息
以下是关于 DeepSeek 的热门资讯信息: 媒体报道和网络文章方面: 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧。链接:https://zhuanlan.zhihu.com/p/20544736305 (错误) 宝玉:教你如何破解 DeepSeek R1 系统提示词,类型为提示词破解,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,类型为基础认知,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,类型为基础认知,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,类型为基础认知,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,类型为基础认知,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,类型为基础认知,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,类型为进阶思考,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 全新 AI 整活计划方面: DeepSeek 模型热度很高,微信指数达 10 亿多次,引发大众关注。 元子使用 Monica 时发现电脑版双击能显示思考过程,且注意不能直接换 agent,否则可能会干掉搜索功能。 财猫曾为相关平台做 AI 顾问,设计整套提示词,写小说等,其公众号因相关内容被封 15 天,19 号恢复。 旧模型有过度道德说教和正面描述趋势,DeepSeek 模型能力强,在文学创作上更出色,能给予更多自由发挥空间。 好的文字能引起生理共鸣和情绪,AI 可写出好文字,大语言模型预训练数据丰富,能引发人类共鸣和情绪。 Deepseek 模型的文风显著,文笔优秀,能触达情感,有哲学思考,在写作方面表现出色,如写小说、写诗、写骈文等。 Deepseek 模型喜欢使用大词,文风欢脱,有独特的语言风格,易于辨别。 Deepseek 模型有极强的发散能力,但较难收敛,有时会出现幻觉,但从创作角度看有利。
2025-02-28
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
怎么针对知识库提问
知识库问答是机器人的基础功能,其利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种结合了检索和生成两种主要人工智能技术的自然语言处理技术,用于提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,通过手工录入方式上传文章内容,如创建有关 AI 启蒙和信息来源的知识库。在设计 Bot 时,添加知识库并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回的内容进行结合回答。 具体步骤包括: 1. 上传文档:支持 txt、pdf、docx 等格式,将文档转换为 Markdown 格式。 2. 文本切割:将长文本切割为小块(chunk)以便分析和处理。 3. 文本向量化:通过 embedding 技术将切割的 chunk 转换为算法可处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,将问句向量化。 5. 语义检索匹配:将用户问句与向量数据库中的 chunk 匹配,找出最相似的 top k 个。 6. 提交 Prompt 至 LLM:将匹配出的文本和问句添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答并返回给用户。 RAG 研究范式不断发展,分为基础 RAG(Naive RAG)、高级 RAG(Advanced RAG)和模块化 RAG(Modular RAG)三种类型。
2025-02-28
我是一名小白,怎么进入知识库?
以下是进入知识库的步骤: 1. 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 。然后到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 2. 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 3. 粘贴“cp configtemplate.json config.json”,点击回车。点击后,关闭此弹窗。 4. 刷新页面。在当前目录下,找到 config.json 文件。双击这个文件,修改画红框的地方。如果是小白,建议直接复制下方的配置。删除文件里的所有代码,复制下边的代码,粘贴到文件里。粘贴后,找到第 4、5 行,把刚才 FastGPT 里拿到 API 和 key,根据要求粘贴到双引号里。修改完之后,点击保存,关闭文件。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度、调用方式等。配置项说明: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回。按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传文本内容: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入知识库页面,并单击创建知识库。 4. 在弹出的页面配置知识库名称、描述,并单击确认。一个团队内的知识库名称不可重复,必须是唯一的。 5. 在单元页面,单击新增单元。 6. 在弹出的页面选择要上传的数据格式,默认是文本格式,然后选择一种文本内容上传方式完成内容上传。
2025-02-28
知识库的商业化应用场景有哪些
知识库的商业化应用场景主要包括以下几个方面: 1. 生物医药领域: 医药企业研发立项:回答关于作用机制、目标治疗疾病的竞争格局、主流技术路径、同技术路径其他公司产品在临床试验阶段的安全性风险和有效性等问题。 科研机构临床转化评估:回答关于科学家研究方向的临床转化潜力等问题。 投资机构评估标的公司:回答关于国外对标技术的发展情况、融资情况、临床转化的可靠性等问题。 2. 其他工作场景: 可以替代大部分传统医药数据库的商业化场景。 在一般的工作场景中,通过提示词设定角色和技能,结合知识库,让大语言模型能够按照需求做出准确回复。例如设定角色为“美嘉”,知识库为《爱情公寓》全季剧情,能够回答相关问题。 此外,在知识库的检索原理方面: 1. 文本预处理:包括去除无关字符、标准化文本、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本转换为向量,通常通过使用预训练的嵌入模型完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型直接提取整个句子的表示。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化。 5. 知识库检索阶段:在大模型的检索中,依靠问题在空间中的向量位置,寻找距离这个向量最近的其他词句完成检索,知识库被转化成巨大的向量库。
2025-02-28
如何搭建AI知识库
以下是搭建 AI 知识库的步骤: 1. 设计您的 AI 机器人,确定其功能范围。 2. 编写【prompt】提示词,设定 Bot 的身份和目标。 3. 创建【知识库】: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。 最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。 此外,您还可以参考相关文章,如《大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库》,以获取更深入的理解和帮助。
2025-02-28
我想找到一些智能客服相关的信息和资源
以下是为您提供的智能客服相关的信息和资源: FastGPT: 更智能的问答:基于 LLM 技术,FastGPT 可以理解自然语言并生成高质量的答案。 更全面的信息:支持连接外部知识库,以获取更全面的信息。 更易用的开发:可视化的工作流编排工具,方便用户创建复杂的问答场景。 更快的上手速度:开箱即用的数据处理和模型调用功能,方便用户快速上手。 总而言之,FastGPT 是一个功能强大、易于使用的知识库问答系统,它可以帮助企业构建智能客服、知识库搜索、文档生成等应用。 相关资源: 5 月 8 日大圣分享《Coze 全流程搭建》: 包含了关于如何利用 AI 实现智能客服、知识库的使用及文档要求、如何使用知识库和工作流让机器人调用知识库生成回答等方面的内容。 相关链接: 扣子案例合集 社区内容分享: 希望这些信息对您有所帮助。内容由 AI 大模型生成,请仔细甄别。
2025-02-28
智能客服
以下是关于智能客服的相关内容: 在开源 AI 社区中,通过 Coze 开发了社群运营机器人作为智能客服。其具有以下功能和特点: 1. 知识库问答:将社区长期积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定的答案。解决了如“AGI 是什么”“什么是 ChatGPT”等基础问题,提高了效率,保证了答案的准确性和一致性。此外,还会基于问题给出相关延伸阅读链接,鼓励用户主动学习,影响用户学习方式。 2. 定时推送:能将活动信息和社区动态定时推送给用户,避免用户错过重要活动。 另外,GPT 智能客服部署方面: 1. GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。 2. GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。其实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库和问题一起做 embedding,扔给 LLM 作答。
2025-02-28
如何搭建智能客服?
搭建智能客服主要包括以下步骤: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 起个好名字,例如“善良有爱专业的幼师” 选择头像,AI 生成后若不喜欢可重新生成 补充:创建 Bot 有两种方式,点击创建 Bot 适合使用过 Bot 且想好名称和描述的人;Coze Assistant 适合第一次创建 Bot 的人,会引导创建并自动生成一些内容,包括名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,您可按需修改完善。 起好名字和头像后,进入教她技能环节。 先查看整理布局,再找到编排、预览与调试。 在编排的人设与回复逻辑教她技能,例如:认识自己、掌握专业技能、不能做什么等。 3. 让她教别人 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题。 开场白预置问题可设置多个。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音跟您交流。 点击“发布”。 4. 选择发布平台 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地与 Bot 对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,本次分享重点部分也是发布到微信客服中,相比其他平台稍微复杂,下面会按步骤引导。 微信公众号(服务号):服务号针对企业,订阅号针对个人,两种账号不互通,服务号不支持个人注册,订阅号运营主体可为企业或个人,服务号运营主体只能是企业或其他机构。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。 因为已经配置过,下面是重新注册微信客服和解绑后重新配置微信客服的流程。
2025-02-26
智能RAG客服系统搭建
搭建智能 RAG 客服系统主要包括以下方面: 1. RAG 全貌概览: RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 2. 应用场景: 以构建智能问答客服为例,了解 RAG 所有流程中的“What”与“Why”。 3. 客服系统的要求: 具备结构清晰、全面的 FAQ 库,覆盖常见问题并根据实际场景动态更新。 例如订票平台,可基于用户信息提前呈现可能遇到的问题及解答。 4. 企业客户实践案例: 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。 5. RAG 提示工程: 在利用 RAG 架构构建智能问答系统时,“指代消解”是关键挑战之一,特别是在多轮对话场景中。 目前采用 Prompt 方法解决指代消解问题,会增加计算资源消耗和系统响应延迟,需权衡推理负荷、Token 消耗和问答准确性等因素,根据具体应用环境和需求做出合理选择。
2025-02-26
如何搭建AI客服
搭建 AI 客服可以按照以下步骤进行: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站: 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署、填写前面获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 3. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面,此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 以下是一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息提供了关于 6 个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-26
如何在拼多多接入AI客服
在网站上接入 AI 客服通常可以按照以下步骤进行: 1. 创建大模型问答应用:通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 2. 搭建示例网站:通过函数计算,快速搭建一个网站,模拟您的企业官网或者其他站点。 3. 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 4. 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 另外,基于 COW 框架实现 ChatBot 时需要注意: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 基于相关教程,可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。本文只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多种模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 支持多种消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-24
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10
抖音直播间ai自动回复
以下是关于抖音直播间 AI 自动回复的相关知识: 在当下的 AI 产品中,大都支持自定义 AI 的回复方式。例如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定“人设与回复逻辑”时,这里的写法就是 Prompt,您可以足够相信 AI 的智商,无论怎么写,它一般都能理解,但以下仅供参考,您可以自由发挥。 目标是尝试输入某个 AI 产品的网址,如:https://www.anthropic.com/news/introducingclaude ,AI 会自动处理并返回这个产品的名称、简介等信息。 测试“人设与回复逻辑”时,尝试输入网址:https://www.anthropic.com/news/introducingclaude ,也就是 Claude 的介绍信息页,AI 就会按照预先设定的格式进行返回。但由于 AI 的特性,它并不总能返回合适的结果。处理这种情况的方法有很多,比如重试、优化 Prompt 或者使用 Workflow(这个后面讲)。 另外,在【AI+知识库】商业化问答场景中,大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天十分擅长。提示词则是告诉这个全知全能的人,他是一个什么样的角色、要专注于哪些技能,让他能够按照您的想法,变成一个您需要的“员工”。知识库相当于给这个“聪明”员工发放的一本工作手册,例如设定使用阿里千问模型,角色是“美嘉”,知识库放的是《爱情公寓》全季的剧情,这样当您提问时,AI 就能根据设定和知识库进行回复。
2025-02-05
可以做一个小红书私信自动回复的ai程序或者智能体吗
在理论上是可以创建一个小红书私信自动回复的 AI 程序或智能体的。但这需要一定的技术知识和开发能力。 首先,您需要确定回复的规则和逻辑,例如根据关键词、常见问题类型等来设定回复内容。 其次,选择适合的技术框架和工具,比如使用自然语言处理(NLP)技术和相关的库。 然后,进行数据收集和预处理,以训练模型能够准确理解和回复私信。 不过,需要注意的是,小红书的使用规则可能对自动回复有一定的限制和要求,您需要确保您的程序或智能体的使用符合其规定。
2025-01-30
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22