大小模型协同的设计主要包括以下方面:
其具体应用包括:
当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫🐱、狗🐶)。
1.如何交互(目前的人机协同模式是什么样)?之前很多人都说到大模型可能会有3种交互模型模式一:以人为主导,大模型提供建议(copilot阶段)像一个副驾驶,开车的时候给你提供建议,但是决定权还是在你手上模式二:人和大模型协同工作,合作完成同一个工作(embedding阶段)在实际的工作场景中,有一些小的环节可以让大模型来完成,从整个工作流程的角度来看这样确确实实的嵌入到我们的工作中,提高的效率模式三:人指挥大模型工作(数字员工阶段)这个阶段目前看来,非常少见。大模型还不能完全独立于人来完成某一个非常具体的工作。可能是一个工程上的问题,也有可能是大模型本身能力欠缺导致。个人观点:当下最应该努力的方向其实:如何从简单使用大模型得到建议,转变为让大模型深度的融入到工作流里面去。这样的一套agent一定是有很高价值的。至于数字员工这个阶段,还不是特别成熟,可以让其他大厂和学界先多试一下
1.如何交互(目前的人机协同模式是什么样)?之前很多人都说到大模型可能会有3种交互模型模式一:以人为主导,大模型提供建议(copilot阶段)像一个副驾驶,开车的时候给你提供建议,但是决定权还是在你手上模式二:人和大模型协同工作,合作完成同一个工作(embedding阶段)在实际的工作场景中,有一些小的环节可以让大模型来完成,从整个工作流程的角度来看这样确确实实的嵌入到我们的工作中,提高的效率模式三:人指挥大模型工作(数字员工阶段)这个阶段目前看来,非常少见。大模型还不能完全独立于人来完成某一个非常具体的工作。可能是一个工程上的问题,也有可能是大模型本身能力欠缺导致。个人观点:当下最应该努力的方向其实:如何从简单使用大模型得到建议,转变为让大模型深度的融入到工作流里面去。这样的一套agent一定是有很高价值的。至于数字员工这个阶段,还不是特别成熟,可以让其他大厂和学界先多试一下作者:朱一鸣,锤子