Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

为什么要布置大模型到本地

Answer

布置大模型到本地主要有以下原因:

  1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。
  2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。
  3. 能够更加灵活地掌握个人知识库。

但需要注意的是,运行大模型需要很高的机器配置:

  1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT-3.5 差不多性能的大模型)。
  2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。
  3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。

个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。

Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

1.首先访问如下网址当你打开这个页面的时候,会让你登陆,这个时候我们随便使用一个邮箱注册一个账号即可1.和本地大模型进行对话登陆成功之后,如果你已经使用过ChatGPT等类似的大模型对话网站,我相信你对这个页面并不陌生。Open WebUI一般有两种使用方式第一种是聊天对话第二种是RAG能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一如果你的要求不高的话,我们已经搭建了一个本地大模型了,并且通过Web UI实现了和大模型进行对话的功能。相信通过这么一通折腾,你就理解了ChatGPT的信息流,至于为什么ChatGPT的访问速度比我们自己的要快,而且回答效果要好,有两个原因快:是因为GPT大模型部署的服务器配置高好:是因为GPT大模型的训练参数多,数据更优以及训练算法更好如果你想要更加灵活的掌握你的知识库,请接着往下看

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

手把手教你本地部署大模型以及搭建个人知识库

所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM+4G VRAM建议配置:16G RAM+8G VRAM理想配置:32G RAM+24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM+4G VRAM建议配置:32G RAM+12G VRAM生成音频大模型最低配置:8G VRAM+建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。这是这篇文章的第二次修改,我专门加的这段。原因就是因为好多小伙伴看了文章之后兴致冲冲的去实验,结果发现电脑根本带不动。但是这并不妨碍我们去手把手实操一遍,因为实操可以加深我们对大模型构建的知识库底层原理的了解。如果你想要私滑的体验知识库,可以参考我的另一篇文章:[胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)好了,废话不多说,下面教程还是值得亲自上手搞一遍的,相信走完一遍流程后,你会对知识库有更深的理解。

Others are asking
MacBook如何做一些AIGC软件布置
很抱歉,目前知识库中没有关于“MacBook 如何做一些 AIGC 软件布置”的相关内容。但一般来说,您可以通过以下步骤尝试在 MacBook 上进行 AIGC 软件的布置: 1. 确定您想要安装的 AIGC 软件,并在其官方网站上查找适用于 macOS 系统的版本。 2. 检查您的 MacBook 系统版本是否满足软件的要求,如果不满足,可能需要进行系统更新。 3. 下载软件安装包,通常可以在官方网站上找到下载链接。 4. 打开下载的安装包,按照安装向导的指示进行操作,可能需要您同意许可协议、选择安装位置等。 5. 安装完成后,在应用程序文件夹中找到并打开该软件,进行必要的设置和配置。 请注意,不同的 AIGC 软件可能会有略微不同的安装和配置步骤,具体还需根据您选择的软件来操作。
2024-09-25
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14