Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

生成式 AI 的人机协同

Answer

生成式 AI 的人机协同主要分为以下 3 种产品设计模式:

  1. Embedding(嵌入式):人类完成大多数工作。
  2. Copilot(副驾驶):人类和 AI 协同工作。
  3. Agent(智能代理):AI 完成大多数工作。

在 Agentic Workflow 中,不同角色的 Agent 可使用 Multiagent Collaboration 的方法,按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,其诉求可通过 Agents 拆解成多个独立任务,遵循不同工作流,生成大体符合期望的输出结果,再进行修改达到可用阶段。

从原子能力层思考,可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,所有这些都围绕“输入”“处理”“输出”“反馈”几个词,构建最底层的信息处理逻辑,如同四个齿轮相互衔接运转,从需求输入到结果输出,围绕信息加速推动。

此外,搜索引擎作为互联网基础设施和入口,与基于大模型的聊天机器人在解决问题的目标上根本一致。自 ChatGPT 发布,其问答形式被认为将对传统搜索引擎带来颠覆。

在智能时代,软件应从简洁开始,逐渐变成无所不在的助理或智能体,辅助甚至直接完成任务,人机协作重点在于目标与结果,AI 劳动力的终极目标是完全自动化并融入人类社会。

在教育领域,ChatGPT 掀起生成式人工智能浪潮,教育圈受到影响。人机协同共创人机混合智能,培养高阶通识能力、跨学科创新思维、协作与互动,涉及知识获取与处理、多模态多样化内容、伦理辨析与讨论等方面,形成了多种教育模式和理念的发展与融合。

Content generated by AI large model, please carefully verify (powered by aily)

References

Inhai: Agentic Workflow:AI 重塑了我的工作流

AI与人的协同关系生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

再往前看一步,这些AI劳动力都在承担着机械的自动化工作,软件还没法真正取代服务,它们得有适应人类社会的能力;它们必须看起来、感觉起来,就像是在与人互动;换句话说,软件在某些方面必须有灵魂,就像优秀的客服代理、销售代理或服务提供商一样。或许我们从OpenAI发布GPT-4o的最新演示中已经窥视到了未来,这才是软件和劳动市场真正融合的关键一步;虽然看上还长路漫漫,但我们正在步步的接近,具体会在第四章详细讨论。配图2.10:智能代理将改变企业组织架构智能时代,我们不能再用移动时代的模式来理解应用,本着人机交互方式越来越简单的趋势,智能应用最先应该从简洁开始,然后它们会从有形的界面中消失,变成真正无所不在的助理,或者是智能体,它们会辅助甚至直接帮我们完成任务;我们与AI协作的重点不再是过程,而是目标与结果,能完全自动化并融入人类社会就是AI劳动力的终极目标。这些数字化的灵魂将无处不在,我们的个人助理,生活中的陪伴、工作中的同事还有我们的合作伙伴,这是一个听上去有些兴奋,但又让人略感不安,却注定会到来。。

张翼然:用AI为教师减负(3H).pdf

教师的AI减负指南[heading2]ChatGPT掀起了生成式人工智能的浪潮[heading3]教育圈首当其冲[heading4]AI教师会代替人类教师么?AI如何教师提供数字资源人机协作共创人机混合智能共创培养高阶通识能力跨学科创新思维协作与互动知识获取与处理多模态多样化内容数字人文伦理辨析与讨论AIGC时代人机协同教育生态大规模自适应学习元宇宙工作场景模拟开源开放社区口耳相传身体力行示范耳濡目染言传身教私塾官学书院手抄本背诵领会注疏评点学而优则仕诵读传承家塾、私学官学、书院读书明理学以致用考试选拔国民教育学校系统科举制度印刷书籍、讲授说理考试评价广播电视教材函授讲义程序教学自学辅导因材施教终身学习教育现代化正规教育、业余教育函授教育广播电视大学数字化学习资源在线学习平台翻转课堂混合学习以学习者为中心学习无处不在教育信息化MOOC网络学习共同体智慧教育个性化智能教材智适应学习虚拟教学助理创造性评估智能校园跨机构协同育人在线教育生态系统AI+教育人机协同因材施教的深化AI赋能泛在学习人机共生理念以学生为中心终身学习跨学科融合生成式多模态自适应规模化因材施教扁平化与网络化跨学科与跨领域智能动态生成资源实时互动与辅导探究性教学伦理辨析与讨论北大

Others are asking
各个国家对生成式人工智能所持态度
以下是各个国家对生成式人工智能所持的态度: 欧洲:《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区。执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 美国:政府官员对生成式人工智能技术表现出兴趣,在评估其带来的机会的同时,也警示潜在风险。政府机构开始就相关问题征求公众意见,预计未来几个月内将有更多行动。例如,白宫宣布将采取更多措施加强美国的人工智能研究、开发和部署。此外,美国对中国实施了更严格的出口管制和投资限制。 中国:是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构正在介入。持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。禁止访问 Hugging Face 等国外网站,但官方批准的“主流价值观语料库”可作为训练数据源。 在移动端应用领域,尽管硅谷被视为 AI 核心地带,但世界各地都在积极构建相关产品。在生成式 AI 网页端和移动端产品的开发方面,不同地区的分布有所不同。例如,超过 30%的生成式 AI 网页端产品起源于美国湾区,而在移动应用开发者中,仅有 12%的团队设立于此。同样,超过一半的顶级生成式 AI 网页端产品在美国开发,而不到 1/3 的移动端应用源自美国本土。在全球范围内,包括亚洲(如中国、印度、韩国等)、大洋洲(如澳大利亚)、欧洲(如英国、法国、德国等)、中东(如以色列、土耳其等)的许多国家和地区都在参与生成式 AI 的发展。
2024-12-26
有没有这些生成式人工智能的url
以下是一些与生成式人工智能相关的 URL: 生成式人工智能简介的视频学习地址: https://youtu.be/G2fqAlgmoPo 中文版本推荐: 生成式人工智能如何改变创意工作相关的框架:NVIDIA 的 2024 年人工智能现状报告链接: 英文解读链接:
2024-12-24
现在市面上面有什么好用的生成式人工智能吗?
目前市面上有许多好用的生成式人工智能,以下为您列举部分: 在文本和图像生成方面,有 OpenAI 的 GPT3(用于文本)、DALLE2(用于图像)、Whisper(用于语音),以及 Midjourney(在艺术竞赛中表现出色)等。 在创建可信角色方面,有 Charisma.ai、Convai.com、Inworld.ai 等,它们旨在为具有情感和自主权的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 一体化平台方面,Runwayml.com 较为成功,它在一个单一的软件包中汇集了一系列广泛的创作者工具。 在企业应用方面,Menlo Ventures 投资组合公司中的 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)等都是早期突破性的代表。 此外,还有 Google 的 BERT 和 LaMDA、Facebook 的 OPT175B 和 BlenderBot 等。同时,有数百公司正在构建通用聊天机器人,如 Replika 和 Anima 等。但需要注意的是,这些模型的训练通常需要大量数据和计算能力,大多数公司难以从头开始训练自己的此类模型。
2024-12-24
生成式人工智能或者专门的书籍教程是什么意思?这种人工智能有什么用?现在市面上有免费的吗?要是没有免费的我去翻外网也可以
生成式人工智能是一种能够创建新内容的人工智能技术。以下是关于生成式人工智能的一些详细信息: 课程方面: 台湾大学李宏毅教授的生成式 AI 课程,主要介绍了其基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。通过学习该课程,可掌握基本概念和常见技术,能使用相关框架搭建简单模型,了解发展现状和未来趋势。学习内容包括: 1. 什么是生成式 AI:定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 改变创意工作方面: 生成式人工智能在创意工作中发挥着重要作用。例如,生成模型经过训练后,可针对特定内容领域进行“微调”,催生了用于生物医学、法律、法语等的专用模型,以及适用于不同目的的 GPT3 等。NVIDIA 的 BioNeMo 是用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和 DNA/RNA 等内容。但使用生成式人工智能仍需人工参与,人类要输入提示让其创建内容,创造性的提示会产生创造性的输出,“即时工程师”可能成为新职业。该领域已出现 DALLE 2 图像提示书和提示市场。 学习资源: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:根据课程内容和资源,制定适合自己的学习计划,多实践、多思考。 目前市面上有部分免费的生成式人工智能资源,但也有收费的。需要注意的是,未经许可翻外网可能存在法律风险,请您谨慎选择。
2024-12-24
如何掌握生成式AI
以下是关于掌握生成式 AI 的一些建议: 课程学习: 可以学习台湾大学李宏毅教授的生成式 AI 课程,该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。 通过学习本课程,能够掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 学习内容: 了解什么是生成式 AI,包括其定义、分类,以及与判别式 AI 的区别和应用领域。 学习生成式模型的基本结构、训练方法、评估指标,以及常见模型的优缺点。 掌握生成式对话的基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 熟悉预训练语言模型的发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 知晓生成式 AI 面临的挑战和解决方法,以及未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法: 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-12-18
生成式AI
生成式 AI 是一种能够生成新内容的人工智能技术,其生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 生成式 AI 和 AIGC 的关系:Generative AI 是“生成式人工智能”的正式称呼,AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 方面,从 OpenAI 的官网可知,2022 年宣发时称其为一种模型,官网帮助页面称其为一种服务,目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),且依赖 GPT 系列模型来运转。 在艺术形态方面,以 Midjourney 等工具为代表,通过背后的人工智能模型,用户根据提供的文本描述可生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做 Prompting,是一种全新形态的人机交互。其核心机制涉及数据(包括获取世界上万事万物的图像存档、创建特定数据集等)、映射(使用算法识别和提取图片中的关键视觉特征)和扩散(利用学习到的数据和视觉特征创造新的视觉表达形式)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段(从大量现有内容中学习,得到基础模型)和应用阶段(基础模型可生成内容并解决一般性问题,还可使用特定领域新数据集进一步训练以解决特定问题)。 Google Cloud 提供了相关工具,如 Vertex AI(端到端机器学习开发平台)、Generative AI Studio(允许快速制作原型和自定义生成式 AI 模型)、Model Garden(提供 MLOps 工具,用于自动化机器学习管道)。
2024-12-18
我应该怎么开始学习ai
以下是新手开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-26
AI无法替代人工的行业
以下是一些 AI 无法替代人工的行业: 1. 医疗行业:虽然 AI 在医疗领域有一定应用,但在一些方面仍无法替代人工。例如,AI 诊疗存在模型准确性问题,责任界定复杂,商业模式也面临诸多挑战,如患者付费意愿低、医院采购动力不足等。在医疗保健和生物技术领域,仍大量依赖受过专业培训的科学家和医生提供服务,这些服务是算法难以替代的。 2. 服务行业:如需要与人进行深度情感交流、提供个性化关怀和复杂问题解决的服务。 需要注意的是,随着技术的发展,AI 与人工的关系也在不断变化,AI 可能会在某些方面辅助和改进这些行业,但完全替代仍面临诸多困难和限制。
2024-12-26
什么是AIGC?
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。 AIGC 在内容创作、广告、媒体等领域有着广泛的应用,其应用形式包括但不限于: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。
2024-12-26
即梦AI生图教程
以下是即梦 AI 生图的教程: 1. 打开即梦 AI 官网:https://jimeng.jianying.com/aitool/home 。 2. 点击 AI 作图中的图片生成。 3. 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 此外,还有即梦 AI 智能画布的相关案例,比如匡威鞋的春季海报: 以匡威春季上新为背景,将鞋子以夸张的比例融入上海城市中,体现运动和城市生活结合的“青春、城市、活力”主题。 制作步骤如下: |步骤|执行|截图| |||| |第 1 步|找了一个目标效果图| | |第 2 步|把鞋子用即梦智能画布抠图,用画布模式放到外滩背景上| | |第 3 步|使用画布模式 轮廓边缘,做融合、扩图、局部重绘,把楼绘制的好看一点| | |第 4 步|用醒图 App 增加文案| | 三步轻松上手,设计从未如此简单!释放你的创造力,成为自己心中的设计大师!快来一起玩 AI,探索 AI 的无限可能!关注「烧拍 AI」了解更多 AI 资讯!
2024-12-26
列车国内最强的图像生成类AI并进行简单介绍和基础教程操作
目前国内图像生成类 AI 有很多优秀的产品,难以明确指出哪一个是最强的。一些常见且表现出色的图像生成类 AI 包括百度的文心一格、字节跳动的云雀等。 以文心一格为例,其基础操作教程通常如下: 1. 访问文心一格的官方网站。 2. 注册并登录账号。 3. 在操作界面中输入您想要生成图像的描述关键词。 4. 选择生成图像的风格、尺寸等参数。 5. 点击生成按钮,等待系统生成图像。 不同的图像生成类 AI 可能在操作细节上有所差异,但大致流程相似。您可以根据自己的需求和使用体验选择适合您的图像生成类 AI 工具。
2024-12-26
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-26
寻找能人机对话的AI工具
以下为您推荐一些能人机对话的 AI 工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,能将文本转换为音频文件。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,是一套服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,在游戏领域,也有一些与生成式 AI 相关的应用: 1. 许多初创公司正考虑使用生成性 AI 来创建可互动的可信角色,如 Charisma.ai(https://charisma.ai/)、Convai.com(https://convai.com/)、Inworld.ai(https://inworld.ai/)等,旨在为具有情感和自主权的完全渲染的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 2. 目前成功的生成性 AI 工具之一是 Runwayml.com(https://runwayml.com/),它在一个单一的软件包中汇集了一系列广泛的创作者工具。但目前还没有专为视频游戏服务的类似一体化平台。 内容由 AI 大模型生成,请仔细甄别。
2024-11-04
有什么着重于「交互」的人机交互的作品设计方案可以参考
目前暂时没有关于着重于“交互”的人机交互作品设计方案的相关内容可供参考。但一般来说,一个好的着重于交互的人机交互作品设计方案通常会考虑以下几个方面: 1. 明确用户需求和目标,深入了解用户群体的特点和行为习惯。 2. 设计直观简洁的界面,确保用户能够轻松理解和操作。 3. 提供及时有效的反馈机制,让用户清楚知道自己的操作结果。 4. 注重多模态交互,如结合语音、手势、触摸等多种交互方式。 5. 进行用户测试和迭代优化,不断改进交互体验。
2024-10-26
人机交互
人机交互方面的知识如下: 具身智能:是人工智能的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来展现智能。其核心在于智能体的“身体”或“形态”,涉及多个学科,在机器人、虚拟现实等领域有广泛应用,但仍面临诸多挑战。 AI 与人的协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在不同模式下,人与 AI 的协作流程有所差异。 大模型在 B 端场景的交互模式:包括以人为主导,大模型提供建议(copilot 阶段);人和大模型协同工作(embedding 阶段);人指挥大模型工作(数字员工阶段)。当下应努力让大模型深度融入工作流,数字员工阶段尚不成熟。
2024-10-08
人机交互
人机交互方面的知识如下: 具身智能:是人工智能的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。其核心在于智能体的“身体”或“形态”,涉及多个学科,在机器人、虚拟现实等领域有广泛应用,但仍面临诸多挑战。 AI 与人的协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,不同模式下人与 AI 的协作流程有所差异。 大模型在 B 端场景的交互模式:包括以人为主导,大模型提供建议(copilot 阶段);人和大模型协同工作,合作完成同一个工作(embedding 阶段);人指挥大模型工作(数字员工阶段)。当下应努力让大模型深度融入工作流,数字员工阶段尚不成熟。
2024-10-08
围棋人机博弈是否有用到智能算法的功能
围棋人机博弈有用到智能算法的功能。 早期的国际象棋对弈程序是以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时,由于搜索空间巨大,采用了基于案例的推理,即从知识库中寻找相似案例来决定棋步。 现代能够战胜人类棋手的对弈程序基于神经网络和强化学习。例如,DeepMind 团队开发的新算法 Deep QNetwork(DQN)可以从经验中学习。2015 年 10 月 AlphaGo 项目首次在围棋中击败人类冠军李世石,之后的 AlphaGo Zero 用新的可以自我博弈的改进算法让人类在围棋领域难以翻盘。 AlphaGO 的价值网络和策略网络以人类高手的对弈数据以及 AI 自我博弈的数据为基础进行训练,并且与蒙特卡洛树搜索有机结合,取得了突破。
2024-09-18
AI与人的协同关系
AI 与人的协同关系主要体现在以下几个方面: 1. 生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,在这 3 种模式下,人与 AI 的协作流程有所差异。其中,Embedding 模式下人类完成大多数工作,Copilot 模式下人类和 AI 协同工作,Agents 模式下 AI 完成大多数工作。 2. 可以使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如产品经理角色,可通过 Agents 拆解任务,遵循不同工作流生成大体符合期望的输出结果,再进行修改达到可用阶段。 3. 应从原子能力层重新思考,重塑工作流。可抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 4. 重塑获取信息的方式,搜索引擎和基于大模型的聊天机器人在解决用户问题的目标上从根本上是一致的。 5. AGI 发展初期,与人脑相比仍有短板,需要向人学习,同时“人的模型”更重要的是解决 AI 与人配合的问题,实现 1+1>2 的效果。但目前如何达到“人的模型”还未知,可能需要在“世界模型”基础上加入个人大量多样的数据。 6. 在未来商业模式中,AI 原生应用包括广义语言的万能翻译机、想象力与创造力、AI 使用工具及相互合作、AI 微决策、AI 与人合作等方面。在相当长时间里,AI 首先要解决的是与人合作的问题,这需要“人的模型”和“人的数据”,让 AI 理解与之配合的人类。
2024-12-25
大小模型协同有哪些设计,具体应用有哪些呢?
大小模型协同的设计主要包括以下方面: 1. 大型模型方面: 大型语言模型:专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,在更多样化的任务中应用。 2. 小型模型方面:通常是被设计来完成特定任务的。 其具体应用包括: 1. 人机协同模式: 模式一:以人为主导,大模型提供建议(copilot 阶段),如同副驾驶,开车时提供建议,决定权在人手中。 模式二:人和大模型协同工作,合作完成同一个工作(embedding 阶段),在实际工作场景中,一些小环节由大模型完成,提高效率。 模式三:人指挥大模型工作(数字员工阶段),但此阶段目前少见,大模型还不能完全独立完成具体工作,可能是工程或大模型能力欠缺导致。 当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
2024-11-13
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
协同办公系统推荐
以下是根据你的需求为你生成的文章: 协同办公系统推荐 协同办公系统是一种将团队成员、流程和工具集成到一个平台上的软件,旨在提高团队的工作效率和协作能力。下面是几种常见的协同办公系统推荐: 1. 产品管理工具:如 Aha!、ProductPlan 等,帮助产品经理从概念到发布管理整个产品生命周期。 2. 协作工具:如 Google Docs、Microsoft Office 365,支持团队协作和文档共享。 3. 项目管理软件:如 JIRA、Trello,用于任务分配和进度跟踪。 4. 市场研究工具:如 Google Trends、SEMrush,分析市场趋势和用户行为。 5. 用户调研工具:如 SurveyMonkey、Typeform,收集用户反馈和需求。 6. 数据分析工具:如 Tableau、Power BI,对市场数据进行可视化分析。 7. 思维导图软件:如 MindMeister、XMind,帮助组织思路和概念。 8. 流程图软件:如 Lucidchart、Visio,绘制产品功能和流程图。 9. 文档模板:使用现成的 MRD 模板作为起点,可以在网上找到多种 MRD 模板。 10. 版本控制工具:如 Git、SVN,管理文档的不同版本。 使用这些协同办公系统可以提高团队的工作效率和协作能力,同时也有助于提高团队之间的沟通效率和文档的可管理性。
2024-05-23