Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大语言模型

Answer

大语言模型相关知识如下:

  • Encoder:在大型语言模型中,Encoder 是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具有词嵌入、位置编码、注意力机制、层叠编码、上下文建模等关键作用。其输出是输入序列对应的上下文化语义表示,会被模型的 Decoder 部分利用。
  • 介绍:大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。能解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题,还可利用相对较小的领域数据集进行定制以解决不同领域的特定问题。其三个主要特征是大型(训练数据集规模和参数数量大)、通用性(能解决常见问题)、预训练微调(用大型数据集预训练,用较小数据集微调)。使用大型语言模型的好处包括一种模型可用于不同任务、微调所需领域训练数据较少、性能随数据和参数增加而增长等。视频中还提到了自然语言处理中的提示设计和提示工程,以及三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。
  • 性能对比:对比不同大型语言模型的性能需考虑多个维度,如理解能力、生成质量、知识广度和深度、泛化能力、鲁棒性、偏见和伦理、交互性和适应性、计算效率和资源消耗、易用性和集成性等。可采用标准基准测试、自定义任务、人类评估、A/B 测试、性能指标等方法进行有效比较。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:大模型中的 Encoder 是什么?

在大型语言模型中,Encoder指的是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具体来说,大模型中的Encoder具有以下几个关键作用:1.词嵌入(Word Embedding)将词语映射为低维密集向量表示,作为模型的输入。2.位置编码(Positional Encoding)引入序列中每个位置的位置信息,使模型能捕捉输入序列的顺序特征。3.注意力机制(Attention Mechanism)通过自注意力层计算输入序列中每个词与其他词的关系,捕捉长程依赖关系。4.层叠编码(Layer Stacking)通过多层Transformer Encoder块的堆叠,对输入序列进行深度的特征提取和语义建模。5.上下文建模(Context Modeling)整合输入序列中每个位置词的全局上下文信息,形成其语义表示。Encoder的输出是输入序列对应的上下文化语义表示,这些语义表示在后续的预测或生成任务中会被模型的Decoder部分利用。在GPT等解码器模型中,Encoder的输出会被Decoder进一步处理,生成新的文本序列。总的来说,Encoder是大型语言模型的核心部件,对于有效地提取和建模输入序列的语义信息至关重要,是实现语言理解和生成的基础。内容由AI大模型生成,请仔细甄别

2. 大语言模型介绍

视频课程学习地址:https://youtu.be/zizonToFXDs宝玉XP的翻译版本:https://www.youtube.com/watch?v=zfFA1tb3q8YGoogle的教学视频《Introduction to Large Language Models|大语言模型介绍》,介绍了大型语言模型(Large Language Models,LLMs)的概念、使用场景、提示调整以及Google的Gen AI开发工具。大型语言模型是深度学习的一个子集,可以预训练并进行特定目的的微调。这些模型经过训练,可以解决诸如文本分类、问题回答、文档摘要、跨行业的文本生成等常见语言问题。然后,可以利用相对较小的领域数据集对这些模型进行定制,以解决零售、金融、娱乐等不同领域的特定问题。大型语言模型的三个主要特征是:大型、通用性和预训练微调。"大型"既指训练数据集的巨大规模,也指参数的数量。"通用性"意味着这些模型足够解决常见问题。"预训练和微调"是指用大型数据集对大型语言模型进行一般性的预训练,然后用较小的数据集对其进行特定目的的微调。使用大型语言模型的好处包括:一种模型可用于不同的任务;微调大型语言模型需要的领域训练数据较少;随着数据和参数的增加,大型语言模型的性能也在持续增长。此外,视频还解释了传统编程、神经网络和生成模型的不同,以及预训练模型的LLM开发与传统的ML开发的区别。在自然语言处理中,提示设计和提示工程是两个密切相关的概念,这两者都涉及创建清晰、简洁、富有信息的提示。视频中还提到了三种类型的大型语言模型:通用语言模型、指令调整模型和对话调整模型。每种模型都需要以不同的方式进行提示。参考资料:

问: 如何对比不同大语言模型的性能

对比不同大型语言模型的性能需要考虑多个维度,包括但不限于以下几个方面:1.理解能力:评估模型对语言的理解程度,包括对语法、语义、上下文和隐含意义的理解。2.生成质量:检查模型生成的文本的质量,包括文本的流畅性、相关性和准确性。3.知识广度和深度:评估模型对广泛主题的知识掌握程度,以及它对特定领域或话题的理解深度。4.泛化能力:测试模型在处理未见过的任务或数据时的表现,这反映了模型的泛化能力。5.鲁棒性:检查模型对错误输入、对抗性输入或模糊不清的指令的应对能力。6.偏见和伦理:评估模型生成文本时是否存在偏见,以及模型是否遵循伦理标准。7.交互性和适应性:评估模型在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。8.计算效率和资源消耗:考虑模型的大小、训练和运行所需的计算资源。9.易用性和集成性:评估模型是否易于集成到不同的应用和服务中,以及提供的API和工具的易用性。为了进行有效的比较,可以采用以下方法:标准基准测试:使用标准的语言模型评估基准,如GLUE、SuperGLUE、SQuAD等,这些基准提供了统一的测试环境和评分标准。自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。A/B测试:在实际应用场景中,通过A/B测试比较不同模型的表现。性能指标:使用包括准确率、召回率、F1分数、BLEU分数等在内的性能指标来量化比较。

Others are asking
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
客服系统,需要写一段提示词给大模型,需求是,先跟用户表示歉意,产品问题请咨询我另外一个同事,点击同事名称即可咨询,每次回复的内容不能一样
以下是为您生成的客服系统相关的大模型提示词示例,每次回复内容不同: 1. 非常抱歉给您带来了不便,关于产品问题,您可以咨询我的同事,点击即可进行咨询。 2. 很抱歉让您遇到了困扰,产品方面的疑问请找我的同事咨询,点击就能联系到。 3. 实在不好意思呀,产品的问题您向我的同事咨询会更清楚,点击即可开启咨询。 4. 深感抱歉,对于产品的情况,建议您咨询我的同事,点击就能和他交流。 5. 抱歉给您造成了不好的体验,产品相关问题请咨询我的同事,点击就能获取帮助。
2025-01-26
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
有没有辅助文献阅读,并能对文献内容进行整理的ai模型
以下是一些能够辅助文献阅读并对文献内容进行整理的 AI 模型和工具: 1. 智谱 AI 大模型开放平台: 场景介绍:大模型技术能快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间,帮助聚焦核心问题。其通用性可适应不同学科和复杂文本,提炼核心观点,为研究工作提速。 论文处理全景图:包括文献预处理和 LLM 内容处理。海量文献需转换为可供模型解析的文本格式,可借助平台工具完成文件内容提取。将文件内容自动化提取并结合大模型可进行批量分析或任务处理。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择有价值和创新性的主题。 收集背景资料,使用学术搜索引擎和文献管理软件搜集相关文献和资料。 分析和总结信息,利用文本分析工具提取关键信息和主要观点。 生成大纲,使用写作助手生成包括引言、文献综述等部分的大纲。 撰写文献综述,利用工具确保内容准确完整。 构建方法论,根据需求设计研究方法。 数据分析,使用工具处理和解释数据。 撰写和编辑,利用写作工具撰写并检查语法和风格。 生成参考文献,使用文献管理工具生成正确格式。 审阅和修改,利用审阅工具检查逻辑性和一致性并修改。 提交前检查,确保原创性和格式调整。 3. 论文写作中常用的 AI 工具和平台: 文献管理和搜索:Zotero 可自动提取文献信息管理参考文献;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对等帮助提高语言质量;Quillbot 可重写和摘要优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭确保原创性。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应结合自身需求和写作风格,仔细甄别。
2025-01-25
现在有哪些开源的文生图大模型?
以下是一些开源的文生图大模型: Kolors: 2024 年 7 月 6 日开源,基于数十亿图文对进行训练,支持 256 的上下文 token 数,支持中英双语。技术细节参考 。 已支持 Diffusers,使用方式可参考 。 支持了 。 支持了 。 关于 Kolors 模型的教学视频: ,作者:BlueBomm 。 ,作者:AI 算法工程师 01 。 ,作者:峰上智行 。 ,作者:设计师学 Ai 。 Kolors 模型能力总结:改进全面,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,在看到 Kling 视频生成的强大表现,能体现快手的技术实力。
2025-01-24
请 输出:Hello Word的C语言代码
以下是一个简单的 C 语言程序,用于输出“Hello World”: ```c include <stdio.h> int main { printf; return 0; } ```
2025-01-25
请问有那款ai是能通过Lisp 语言实现一些输出操作的呢?
以下是一些能够通过 Lisp 语言实现输出操作的 AI 示例: 在“AI‘词生卡’的蝴蝶效应:从文字到视觉盛宴跨界蝶变”中提到,古早的 Lisp 语言在 Claude3.5 强大的理解力和绘图支持下焕发了新生,制造了新卡。 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,将提示词用 Lisp 语言编写后丢给 Claude,例如输入文本,Claude 大概率会直接输出 SVG 代码。但对于复杂的函数调用,大语言模型处理起来较困难。
2025-01-23
请问 有哪几款ai是可以使用claude语言的呢?
Claude 是由 Anthropic 公司开发的 AI 助手。目前,Claude 本身就是一款独立的 AI,不存在其他可以使用 Claude 语言的 AI。 要注册 Claude.ai,您可以按照以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写您的邮箱地址并设置密码,然后提交表单。 4. 系统会向您的邮箱发送一封验证邮件,您需要打开邮件并使用其中的验证码来完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,以下是一些可能的解决方案: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 如果您有海外朋友,可以请他们帮忙接收验证码,并将验证码告诉您。 完成注册后,如果您希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,您需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。 请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。如果您在注册过程中遇到任何问题,可以参考其他用户分享的详细注册教程和解决策略。
2025-01-23
到今天,大语言模型还会产生“幻觉”吗
截至今天,大语言模型仍会产生“幻觉”。 大语言模型偶尔会根据输入输出一些荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都不尽如人意。产生“幻觉”的原因包括: 1. 样本存在错误(Imitative Falsehoods):如果大语言模型学习的“教材”中有错误,它也容易给出错误回答。缓解该问题的一个办法是上采样(Up Sampling)。 2. 信息过时(Outdated Factual Knowledge):以前正确的信息现在可能过时了。 此外,大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。如果在其训练过程中,模型被暴露于大量知识之中,它并没有完美地记忆所见到的信息,并不十分清楚自己的知识边界,可能会尝试回答有关深奥话题的问题,并虚构听起来有道理但实际不正确的内容。 在构建应用程序时,可以使用一些技术来避免这种情况,例如要求模型先从文本中找到相关引文,然后使用引文回答问题,并将答案追溯回源文件,这通常有助于减少“幻觉”的发生。
2025-01-22
ai语言模型记忆能力与什么相关,可以拥有人类相当的记忆吗
AI 语言模型的记忆能力主要与以下因素相关: 1. 长期记忆:主要有长文本(持久化)、总结、RAG 等实现方式。长文本处理中的 KV Cache 可通过缓存历史计算的 Key(K)和 Value(V)减少冗余计算,但需额外存储空间,可能导致显存占用增加,未来结合持久化 KV Cache、KV Cache 的压缩技术有望控制成本,从而打造出记忆力超越人类的智能体。 2. 短期记忆:主要存在于模型的上下文中,由对话内容(用户输入、模型输出)和系统提示词组成。 Inworld AI 开发的角色引擎,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能,其中长期记忆方面,角色能以类似人类的记忆功能操作,从闪存和长期记忆中检索信息。 人类的思维是由自然语言或感官记忆构成的超高维时间序列,而人工智能与人类不同,人类会为事物赋予意义与价值,人工智能则更追求“更准”。强化学习是人工智能的一个重要分支,通过定义状态、动作与奖励等元素,让 AI 求解如何选择动作以获得最大的期望奖励总和。
2025-01-20
ai语言模型是如何运作的
AI 语言模型的运作机制主要包括以下几个方面: 1. 对于大语言模型(LLM),如豆包在回复时是一个字一个字地推理生成内容,即流式输出。这类似于输入法的输入联想逻辑,会根据输入的单个字或上下文推测下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易受不相干信息干扰。为解决这些问题,出现了词向量机制和 Transformer 模型中的 Attention 自注意力机制。 2. 大型语言模型通过大量的数据训练来学习语言的结构和模式,包括词汇、语法、句子结构以及上下文关系。当接收到输入时,会根据学习到的知识生成连贯的回答,类似于词语接龙游戏。 3. 以 Kimi Chat 为例,大模型会利用网页搜索工具,在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。同时,大模型还可以通过自行规划任务执行的工作流路径,如先识别男孩的姿势,再找到相关模型处理等。 4. 在多智能体协作方面,如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。 5. OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,并对过去的行动进行自我批评和反思,以提高最终结果的质量。 需要注意的是,大模型并不拥有无限知识,其知识来源于训练过程中接触到的数据,这些数据是有限的。虽然大模型可以处理和生成大量信息,但只能回答在训练过程中见过或类似的问题,且训练后的知识库不会自动更新。
2025-01-20