直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率

回答

以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器:

import numpy as np

# 第一步:导入需要的库
import numpy as np

# 第二步:加载数据
data = np.load('/public/xdw/ls/signaldefense/AS/perturbed_data.npy')

# 第三步:获取数据样本的扰动值
perturbation_values = data[:, 1]  # 假设扰动值在第二列

# 第四步:判断扰动值的大小并计数
count_0 = 0
count_0_001 = 0
count_0_003 = 0
count_0_005 = 0

for value in perturbation_values:
    if value == 0:
        count_0 += 1
    elif value == 0.001:
        count_0_001 += 1
    elif value == 0.003:
        count_0_003 += 1
    elif value == 0.005:
        count_0_005 += 1

# 第五步:计算正确率
total_samples = len(perturbation_values)
accuracy_0 = count_0 / total_samples
accuracy_0_001 = count_0_001 / total_samples
accuracy_0_003 = count_0_003 / total_samples
accuracy_0_005 = count_0_005 / total_samples

print("扰动值为 0 的正确率:", accuracy_0)
print("扰动值为 0.001 的正确率:", accuracy_0_001)
print("扰动值为 0.003 的正确率:", accuracy_0_003)
print("扰动值为 0.005 的正确率:", accuracy_0_005)
内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
计算两个文本的相识度代码实现
以下是关于计算两个文本相似度的代码实现相关内容: 在文本处理中,文本会先转为 tokens,再转为向量,然后放到计算机中运算以找出规律。在文本转为向量后,可以通过欧式距离或 cosin 角度来计算两个文本之间的相似性。例如,使用 SBERT 算法时,对于描述主体相同的情况(如屏幕相关的描述)会设为高相似性。文本统计单位“1”通常是以二级类别来衡量,比如屏幕模糊,它包括画面模糊、边缘模糊、文本模糊等细分情况。若要统计三级类别,目前多采用人工统计。同时,文本统计单位“1”是一个 clustering 概念,因为在向量空间中难以找到完全相同的两个单位,更多是距离较近的单位,所以统计通常以 clustering 计算。 另外,在初级菜鸟学 Langchain 实录中,对于文本相似度检索过程,包括读入文字、进行文字清洗、文本句子切分、文本向量化、计算相似度以及取前几的答案等步骤,详情可见 https://github.com/yuanzhoulvpi2017/DocumentSearch 。
2024-12-19
cursor好用吗?不会写代码的人可以用它来开发app吗
Cursor 是一款很好用的工具,具有以下优点: 1. 它是对话式的编程工具,集代码编写、报错调试、运行于一体,可在一个页面里丝滑实现,且以对话方式进行,能消除学习代码的恐惧感。 2. 让小白可以无压力入门代码,解决实际问题,也能提高专业程序员的效率。 3. 基于 VS code 开发,是目前使用体验最好的 AI coding IDE,不具备代码能力的人通过自然语言描述能快速开发一些项目。 4. 继承了 vscode 的强大功能和用户界面,几乎一模一样,还深度集成了 gpt 等大模型,无缝融入了包括 IntelliJ IDEA、Visual Studio Code 和 GitHub 在内的主流开发环境和代码库中。 5. 体量小,启动快,编程效率高。 然而,Cursor 也有一些局限性: 1. 比较适合简单、原型类的项目,当应用比较复杂和商业化时,会比较困难,需要考虑长期维护、用户场景和稳定性等因素。 2. 代码编写只是开发中的一环,程序员的工作还包括需求评估沟通、架构设计、调试部署等多个模块,而且大语言模型面对复杂项目可能面临改好一个 bug,产生一个新 bug 的情况。 总的来说,对于不会写代码的人,Cursor 可以帮助他们入门和开发一些简单的项目,但不能完全替代专业程序员。目前 Cursor 新账号有 2 周 pro 体验,成本为 0,值得一试。它支持多种语言,如 python、java、C等,在国内可以直接使用,还提供了 3 种订阅模式。
2024-12-16
哪个ai可以帮我写Excel代码
以下是一些可以帮助您写 Excel 代码的 AI 工具: 1. ChatGPT:您可以直接向它提问,它能为您生成相关代码。例如,对于批量处理每月周报的操作,如 30 个文件合并、标准化和删除无效数据等,您可以向 ChatGPT 寻求帮助。而且在询问过程中,它甚至能补充如何用快捷键打开 Excel 开发模式等信息。 2. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 3. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,Copilot 会自动完成数据分析或格式创建等任务。 4. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 5. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-15
无代码生成App
以下是一些无代码生成 App 的相关信息: 在 ProductHunt 2023 年度最佳产品榜单的无代码工具类别中: Bento(免费)是一个链接合集页面,内容丰富设计美观,能美化展示所有内容和链接,展示个性和品味。Linktree 在年底收购了 Bento。 PlyBeta 可使用无代码方式在 APP 中构建内部功能,适用于众多应用程序,为团队提供动力。 Dora AI 能用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Albato 3.0(免费可用)能通过直观的构建器将应用程序集成到自动化工作流中。 Coze 是字节跳动推出的一站式 AI 开发平台,支持无代码生成 AIAgent,能简化 AI 开发过程,让用户无需编写代码创建、管理和部署 AI 工具。它有国内版和国际版,提供多样化模型选择和丰富的插件能力,还具备自动构建、定制 Prompt 等功能,其插件系统和记忆库功能强大。 GPTPilot 作为 AI 开发者伴侣,在代码生成质量不断完善的基础上结合图片理解和文档内容理解可实现无代码开发项目。它能自动编写代码、配置开发环境等,开发者可在一旁监督开发过程,还能通过交互式开发明确需求。
2024-12-14
学习开发一个针对app类型的分类器
开发一个针对APP类型的分类器涉及多个步骤,包括数据收集、数据预处理、模型选择和训练、评估和部署。以下是详细的步骤和所需工具: 步骤一:数据收集 首先,需要收集大量已分类的APP数据。这些数据可以从各种APP商店(如Google Play Store、Apple App Store)获取。数据应包括APP的名称、描述、类别等。 数据来源 Google Play Store: 可以使用Google Play API或其他爬虫工具如Scrapy获取数据。 Apple App Store: 使用App Store API获取APP数据。 示例代码(使用Google Play Scraper) ```python from google_play_scraper import app, search 搜索关键词并获取应用信息 results = search for result in results: app_id = result details = app print ``` 步骤二:数据预处理 收集的数据需要进行预处理,包括清洗、标准化和特征提取。通常会处理文本数据,如APP的描述,进行分词、去停用词等操作。 数据清洗与特征提取 文本清洗: 去除特殊字符、标点符号、HTML标签等。 分词与词向量: 使用NLTK、spaCy等进行分词,使用TFIDF或Word2Vec将文本转化为向量。 示例代码(文本处理) ```python import nltk from sklearn.feature_extraction.text import TfidfVectorizer 分词与停用词处理 def preprocess_text: tokens = nltk.word_tokenize tokens = return ' '.join TFIDF 特征提取 tfidf = TfidfVectorizer features = tfidf.fit_transform ``` 步骤三:模型选择与训练 选择合适的机器学习模型进行训练。常用的模型包括朴素贝叶斯、SVM、随机森林和深度学习模型(如RNN、BERT)。 模型选择 朴素贝叶斯: 简单且高效,适合初步尝试。 SVM: 对高维数据有效。 随机森林: 强大的分类模型。 深度学习: 适合大数据集和复杂任务。 示例代码(使用朴素贝叶斯) ```python from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score 数据集划分 X_train, X_test, y_train, y_test = train_test_split 训练模型 model = MultinomialNB model.fit 预测与评估 predictions = model.predict accuracy = accuracy_score print ``` 步骤四:模型评估与优化 使用交叉验证、混淆矩阵等方法评估模型的性能,并根据结果进行模型优化,如调参、特征选择等。 示例代码(模型评估) ```python from sklearn.model_selection import cross_val_score from sklearn.metrics import classification_report, confusion_matrix 交叉验证 scores = cross_val_score print 混淆矩阵与分类报告 print print ``` 步骤五:部署模型 训练好的模型可以使用Flask、Django等框架部署为API服务,供实际应用调用。 示例代码(Flask 部署) ```python from flask import Flask, request, jsonify import pickle app = Flask 加载模型 with open as f: model = pickle.load @app.route def predict: data = request.get_json description = preprocess_text features = tfidf.transform prediction = model.predict return jsonify if __name__ == '__main__': app.run ``` 工具推荐 数据收集: Google Play Scraper, App Store API 数据处理: NLTK, spaCy, sklearn 模型训练: sklearn, TensorFlow, PyTorch 模型部署: Flask, Django 参考文献 通过这些步骤和工具,您可以开发一个高效的APP类型分类器,并将其应用于实际业务中。
2024-06-17