Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

ollama嵌入向量在模型后有什么用

Answer

嵌入向量在模型后的作用主要体现在以下方面:

  1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。
  2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。
  3. 支持多语言和不同粒度的检索任务:例如像 bge-m3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。

在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

GPT 的现状(State of GPT)

接下来,正如我们所看到的,当我们试图解决问题时,我们知道我们擅长什么,不擅长什么,我们会依赖于工具进行计算。你可能也想同样处理你的LLM。特别是,我们可能想要给它们提供计算器、代码解释器等,以及进行搜索的能力,有很多技术可以做到这一点。再次要记住的一点是,这些transformer在默认情况下可能不知道它们不知道的东西。你甚至可能想在提示中告诉transformer,「你在心算方面并不是很好,每当你需要进行大数的加法、乘法或其他操作时,请使用计算器。以下如何使用计算器的,使用这个token组合,等等等等。」你必须真正地写出来,因为模型默认情况下并不知道它擅长什么或不擅长什么,就像你和我一样。接下来,我认为非常有趣的一点是,我们从一个只能检索的世界转变到了完全依赖LLM记忆的世界。但实际上,这两个钟摆之间还有整个检索增强模型的空间,它在实践中表现得非常好。正如我所提到的,Transformer的上下文窗口是其工作记忆。如果你能将与任务相关的任何信息加载到工作记忆中,模型就会表现得非常好,因为它可以立即访问所有的记忆。所以,我认为很多人对基本的检索增强生成非常感兴趣。在底部,我有一个LLaMA索引的例子,它具有一个数据连接器,可以连接到各种类型的数据。你可以索引所有这些数据,并使得LLM可访问它。这里的新兴配方是你取相关的文档,将它们分成块,将它们全部嵌入,并基本上得到表示这些数据的嵌入向量。你将其存储在向量存储中,然后在测试时,你对你的向量存储进行一些查询。你获取可能与你的任务相关的块,并将它们填充到提示中,然后生成。这在实践中可以工作得相当好。

开发:LangChain-2023 AI应用发展回顾

最常用的向量存储正如前面提到的,检索是大语言模型应用程序的重要组成部分。向量存储正在成为检索相关上下文的主要方式。在LangChain中,我们与60多个向量存储集成——最常用的有哪些呢?我们看到本地向量存储是使用量最大的,其中Chroma、FAISS、Qdrant和DocArray均进入前5名。如果根据用户数量来计算,那么使用量最大的自然就是本地的免费向量存储。在托管的提供商中,Pinecone是唯一进入前5名的托管向量存储。Weaviate紧随其后,这表明原生向量数据库目前使用得比后添加向量功能的数据库更多。在那些添加了向量功能的数据库中,我们看到领先的是Postgres(PGVector)、Supabase、Neo4j、Redis、Azure Search和Astra DB。需要注意的是,这些排名基于使用给定提供商的用户数量。[heading1]最常用的嵌入[content]最常用的嵌入为了使用向量存储,您需要为文本片段计算嵌入。那么开发人员是如何做到这一点的呢?与大语言模型类似,OpenAI占据主导地位——但之后我们看到了更多样化。开源提供商使用得更多一些,其中Hugging Face位居第二,GPT4All和Ollama也进入前8名。在托管提供商方面,我们看到Vertex AI实际上超过了AzureOpenAI,Cohere和Amazon Bedrock也不遑多让。

Others are asking
ollama跟llama.cpp差异
Ollama 和 llama.cpp 存在以下差异: 1. 功能特点: Ollama 是一个开源的大型语言模型服务,能方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同模型。 llama.cpp 是将 Facebook 的 LLaMA 模型在 C/C++ 中的实现。 2. 部署和使用: Ollama 的安装和使用相对简单,例如在 Mac 系统中,可通过以下两步完成:打开 ollama.com 下载应用并安装;在终端输入相应指令运行模型。 llama.cpp 编译时为利用 Metal 的 GPU 有特定命令,还需下载模型,且提供了 WebUI 供用户使用。 3. 支持的模型: Ollama 支持如 Google Gemma 等小型模型的本地部署。 llama.cpp 支持 LLaMA 模型。 4. 性能表现: Ollama 中 2b 版本反应速度快但互动话题有限,7b 版本输出内容质量相对高但可能有卡顿,对非英文语种反馈不稳定。
2024-12-09
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
ollama下载链接
Ollama 的下载链接为:https://ollama.com/download 。 Ollama 具有以下特点: 1. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可通过 https://ollama.com/library 查找并下载不同的模型,这些模型有不同参数和大小以满足不同需求和硬件条件。 4. 支持用户自定义模型,可通过简单步骤修改模型的温度参数等。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装完之后,确保 ollama 后台服务已启动(在 macOS 上启动 ollama 应用程序即可,在 Linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可通过 ollama 命令下载模型。
2024-11-07
如何通过ollama 搭建本地知识库
以下是通过 Ollama 搭建本地知识库的步骤: 1. 了解背景:本文思路来源于视频号博主黄益贺,旨在分享如何部署本地大模型及搭建个人知识库,让您了解相关核心技术及流程。 2. Ollama 简介:Ollama 是一个开源框架,用于简化本地运行大型语言模型的过程,是轻量级、可扩展的,提供简单 API 和预构建模型库,适合初学者和非技术人员,能推动大型语言模型的发展和应用。 3. 安装 Ollama:官方下载地址为 https://ollama.com/download ,安装完成后可通过访问特定链接判断是否安装成功。 4. 运行本地大模型:安装完成后,在命令行中运行相应命令,模型名称可通过查看,如选择 llama2 大模型,可根据机器配置选择合适参数的模型,运行时 Ollama 会自动下载大模型到本地。 此外,还有关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG 的相关内容,包括加载所需库和模块、从订阅源获取内容、为文档内容生成向量等步骤。
2024-10-12
Ollama是什么?
Ollama 是一个开源框架,具有以下特点和功能: 1. 专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计,简化了部署过程,方便非专业用户管理和运行复杂模型。 2. 是一个轻量级、可扩展的框架,提供简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合自然语言处理研究、产品开发以及初学者或非技术人员使用。 3. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同的模型,这些模型有不同的参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 官方下载地址:https://ollama.com/download 。安装完成后,可通过 ollama list 确认,未下载模型时通常显示为空。可通过 ollama 命令下载模型。
2024-10-09
dify的部署和ollama联动
以下是关于 Dify 与 Ollama 联动部署的相关信息: Ollama 的特点和功能: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持自定义模型,可修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 的安装和使用: 1. 访问 https://ollama.com/download/ 下载安装。 2. 安装完后,确保 Ollama 后台服务已启动。在 Mac 上启动 Ollama 应用程序,在 Linux 上通过 ollama serve 启动。可通过 ollama list 确认。 3. 通过 ollama 命令下载模型。 Google Gemma 的本地部署: 1. 进入 ollama.com 下载程序并安装(支持 Windows、Linux 和 macOS)。 2. 在命令提示符中输入 ollama v 检查版本,安装完成后版本应为 0.1.26。 3. 输入 cls 清空屏幕,然后输入 ollama run gemma 运行模型(默认是 2b),首次需要下载。若想用 7b,运行 ollama run gemma:7b 。 4. 完成后可直接对话。2b 反应速度快但互动话题有限,7b 输出内容质量相对高但可能卡顿,对非英文语种反馈不稳定。 5. 常用内部指令:/set 显示设置界面可调整的设置项;/show 显示模型信息;/load <model> 加载已有模型;/bye 退出。 整体框架设计思路: 可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。本次开发的运行环境是 Intel Mac,其他操作系统也可行。下载模型等可能需要梯子。 Langchain 简介: Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,使与 LLM 交互变简单。其核心在于“链”概念,是模块化组件系统,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑。其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具,帮助开发者高效管理从原型到生产的各个阶段以优化 LLM 应用。
2024-10-08
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
Coze中能给变量在赋值中嵌入其它变量并同时 使用公式么
在 Coze 中,变量是以 keyvalue 形式存储数据的,是 Bot 的数据记忆功能。大语言模型会根据用户输入内容进行语义匹配,为定义的变量赋值并保存值。您可以在提示词中为 Bot 声明某个变量的具体使用场景。 创建变量可在创建 Bot 的页面进行。对变量进行赋值时,首先可以在给大模型的提示词中做声明,例如:“与您的用户进行互动,并根据 user_language 变量,用他们偏好的语言在线搜索。除非另有设置,用户查询的语言应指导您的回答和搜索”。这段提示词相当于告诉了 LLM,user_language 这个变量该如何赋值以及使用。 变量创建并赋值后,如 user_language 变量,就可以在工作流中作为变量使用。这一块解释起来有些抽象,具体可以参考后面的例子,真正用一遍就懂了。 综上,在 Coze 中能给变量在赋值中嵌入其它变量并同时使用公式,但具体的实现方式和规则需要根据具体的提示词和使用场景来确定。
2024-12-11
智能体如何嵌入课件
以下是关于智能体嵌入课件的相关内容: 在提示词培训课中: 点击“创建智能体”按钮。 输入对智能体的描述,如有准备好的提示词模板可直接粘贴。 ChatGLM 的智能体配置可自动生成,默认勾选增强能力,可根据实际需求调整,也可上传本地文件作为知识原料形成智能体的知识库。 在基础通识课中: 以可视化方式讲解 Transformer 架构,单词先拆分再嵌入(embedding),为保证语序不乱会做位置编码标记,嵌入后进入自助运力机制模型。 在 AI 智能体:企业自动化的新架构 Menlo Ventures 中: 轨道智能体被赋予更高级目标和更多自由度选择实现方法和工具,受程序性知识指导,拥有预定义工具并受保护栏和审查措施约束。 运行时会产生规划智能体评估应用程序当前状态、选择并执行最佳链条、进行审查和确保一致性等模式。 请注意,由于最近盗版事件频发,需要课件的扫群主二维码获取。
2024-10-16
如何自己弄一个网页嵌入型的智能问答对话AI
以下为您介绍如何自己弄一个网页嵌入型的智能问答对话 AI: AskAI 是一个不错的选择。它是一个构建自己的 AI 问答系统的平台,用户可以通过无代码的方式,在几分钟内构建自己的 AI 问答系统。 其特点和优势包括: 1. 能够快速构建:在短时间内即可完成。 2. 嵌入方式灵活:可以将构建好的系统分享到任何网页上,嵌入到网页中,或通过 API 进行访问。 3. 技术支持:使用 OpenAI 的嵌入技术。 AskAI 的官网是:https://www.myaskai.com 。通过该平台,您能够较为便捷地实现自己的网页嵌入型智能问答对话 AI 的需求。
2024-09-02
哪个服务可以把comfyui嵌入到现在有的网站
ComfyUI 是一个基于 Stable Diffusion 模型的图形用户界面(GUI),它允许用户通过节点式工作流设计和执行高级的图像生成任务。根据搜索结果,ComfyUI 可以作为一个独立的应用程序运行,并且似乎没有直接的选项将其嵌入到现有的网站中。 但是,如果你想将 ComfyUI 的功能集成到现有的网站中,你可以考虑以下几种方法: 1. 反向代理:可以在服务器上运行 ComfyUI,并使用反向代理服务(如 Nginx 或 Apache)将特定路由指向 ComfyUI 的接口,这样用户就可以通过你的网站访问 ComfyUI 的功能。 2. iframe 嵌入:如果 ComfyUI 提供了可以直接访问的 URL 并且可以作为服务运行,你可以尝试使用 HTML 的 `<iframe>` 标签将其嵌入到你的网页中。但是,出于安全和同源策略的考虑,这可能需要 ComfyUI 服务端的支持。 3. API 集成:如果 ComfyUI 支持 API 调用,你可以在自己的网站后端创建一个代理服务,将用户的请求转发给 ComfyUI 的 API,并将结果返回给前端用户。 4. 微服务架构:将 ComfyUI 作为微服务架构的一部分运行,并通过内部网络提供其功能,你的主网站应用程序可以通过服务间通信与之交互。 5. Web 服务集成:如果 ComfyUI 提供了 Web 服务接口,你可以在你的网站后端使用服务器端渲染技术(如 Node.js、PHP、Python 等)来与 ComfyUI 进行交云,并动态生成用户界面。 6. 容器化部署:使用 Docker 或其他容器化技术将 ComfyUI 部署为一个容器实例,并通过容器编排工具(如 Kubernetes)管理其运行,你的网站可以通过网络请求与之通信。 请注意,这些方法可能需要一定的技术知识和额外的配置工作。此外,确保任何集成都符合 ComfyUI 的使用条款和版权要求。如果你需要具体的技术指导,可能需要联系 ComfyUI 的开发者或查阅相关的开发者文档。
2024-04-23
向量检索在大语言模型中的应用主要是为了解决什么问题
向量检索在大语言模型中的应用主要是为了解决以下问题: 1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。 2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。 3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。 4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
2024-12-05
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
以图片为主的PDF文件向量化的本地大模型推荐
以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 PDF 翻译的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。 3. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。 6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
稀疏向量有什么用,跟稠密向量油什么区别
稀疏向量和稠密向量在多个领域都有重要的应用,它们的主要区别在于元素的分布和存储方式。 稀疏向量中,大部分元素的值为零或为空,只有少数元素具有非零值。其主要用途包括: 1. 在处理大规模数据时,能够节省存储空间和计算资源,例如在自然语言处理中处理高维的词向量。 2. 对于具有稀疏特征的数据,能够更有效地表示和处理,比如在推荐系统中用户的兴趣特征。 稠密向量则是大多数元素都具有非零值。其特点和适用场景包括: 1. 更适合表示数据特征分布较为均匀的情况。 2. 在一些需要精确计算和密集运算的场景中表现较好,例如图像识别中的像素特征向量。 总的来说,选择使用稀疏向量还是稠密向量取决于具体的应用场景和数据特点。
2024-09-07
支持向量机
支持向量机(SVM)是一种重要的机器学习算法。 在深度学习的发展历程中,尽管取得了一些进展,但在特定时期,如人工智能寒冬期间,用于神经网络研究的资金很少,人工智能领域发展受到一定限制。在此期间,Cortes 和 Vapnik 于 1995 年开发的支持向量机表现突出,使得一些重要进展如 Hochreiter 和 Schmidhuber 在 1997 年为递归神经网络开发的长短期记忆(LSTM)被忽视。后来随着计算机性能提升,神经网络逐渐与支持向量机相竞争,且在相同数据量下能获得更好结果,同时神经网络在有更多训练数据时会持续改进。 在算法学习中,支持向量机属于强学习器。强学习器通常具有高准确率,能很好地泛化到新数据上,例如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。而弱学习器准确率仅略高于随机猜测,通常是简单的模型,如决策树桩。
2024-09-06
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
大模型在金融领域的量化投研领域的应用
大模型在金融领域的量化投研领域有以下应用和特点: 1. 大型系统工程: 量化和大模型都需要大型计算集群,上万张卡的互联是对基础设施的极致挑战。量化对性能和效率有极致追求,交易指令速度至关重要;大模型在基础设施层面的每一点提升都能优化训练效率。 细节在大型系统工程中十分关键。量化交易系统包含多个方面,任何环节出问题都会导致交易系统失败;大模型预训练从数据到评估包含大量细节,如数据配比、顺序、训练策略等。 2. 本土化机会: 很多 Global 的量化基金到中国会水土不服,国家政策也限制其大规模开展业务,给国内量化基金崛起机会。 OpenAI、Google、Meta 等的模型中文能力一般,未对中国国情优化,不符合政策要求,给国内大模型公司本土化预训练机会。 两者都受政策影响极大,需要有效监管才能健康发展。 3. 其他相似之处: 少数精英的人赚大量的钱,做大模型和金融量化都不用很多人,但每个人都要绝顶聪明。 核心问题一样,下一个 token 预测和下一个股价预测类似。 都需要大量数据,都追求可解释性。 作者:黄文灏 源地址:https://zhuanlan.zhihu.com/p/646909899 最近和朋友讨论发现大模型预训练和金融量化有很多相似之处,作者恰好同时具有两者背景,做了对比。
2024-12-25
大模型在办公场景的应用
大模型在办公场景有诸多应用,具体如下: 基础办公提效:在 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等方面,能从单个任务 task 到角色 role 再到角色间协同 collaboration 显著提高工作效率。 人力资源管理:覆盖招聘初期(如职位描述生成、简历分析、面试题设计)、员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)以及员工培训与发展各个环节,提高工作效率。 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary)。 此外,在游戏行业,大模型能降低成本,打造创新玩法,提供更好的游戏体验。如网易推出的首款 AI 手游《逆水寒》,将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特剧情体验,还内嵌了全自动“AI 作词机”。在健身行业,AI 减重顾问既能解决售前客服问题,也能解决学员离开健身营之后的健康监护,提高学员体验。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
ChatGPT如何训练需要的模型
ChatGPT 的训练模型主要包括以下几个方面: 1. 预训练(Pretrain)阶段:建立模型的能力上限,如确定模型各方面能力的天花板。此阶段跟 GPT3 的方法近似,例如采用 decoderonly 的网络架构,有特定的模型大小、输入窗口大小、单词本大小,见过大量的 tokens,使用大量的原始训练文本。 2. 监督微调(Supervised Finetune,SFT)阶段:让模型学会对话的形式展开,即知道如何按照对话的格式进行交流。 3. 强化学习从人类反馈(Reinforcement Learning from Human Feedback,RLHF)阶段:细分为奖励模型(RM)阶段和强化学习(RL)阶段,能激发模型具备多种能力,包括安全性、推理能力和稳定性等。 训练方式主要是通过材料学习,不断形成模型。其本质功能是“单字接龙”,通过自回归生成的方式,将生成的下一个词与之前的上文组合,不断重复生成任意长的下文。训练的目的不是记忆,而是学习提问和回答的通用规律,实现举一反三,即泛化。学习材料用于调整模型,得到通用模型,以处理未被数据库记忆的情况。ChatGPT 不是搜索引擎的升级版,搜索引擎无法给出未被数据库记忆的信息,而 ChatGPT 作为生成模型可以创造不存在的文本,但可能存在混淆记忆、无法直接查看和更新所学、高度依赖学习材料以及缺乏及时性和准确性等缺点。
2024-12-24
如何训练模型
训练模型的方法有多种,以下为您介绍几种常见的训练模型方式: 1. 用 SD 训练一套贴纸 LoRA 模型: 原始形象:MJ 初步产出符合设计想法的贴纸原始形象。 二次加工:完成贴纸的白色边线等细节加工。 处理素材:给训练集图片打 tag,修改 tag。 训练模型:将上述处理好的数据集做成训练集,进行训练。 2. 基于百川大模型训练虚拟专家: 选择 Baichuan27BChat 模型作为底模,配置模型本地路径,配置提示模板。 在 Train 页面里,选择 sft 训练方式,加载定义好的数据集 wechat 和 self_cognition。 学习率和训练轮次非常重要,根据自己的数据集大小和收敛情况来设置。 使用 FlashAttention2 可减少显存需求,加速训练速度。 显存小的朋友可以减少 batch size 和开启量化训练,内置的 QLora 训练方式非常好用。 需要用到 xformers 的依赖。 显存占用 20G 左右,耐心等待一段时间。 3. 使用编码器解码器架构构建诗歌生成器: 在训练模型之前,需要一个损失函数,由于本质上是一个多类分类问题,损失将是稀疏的分类交叉熵损失,配置从 logits 计算的损失。 有了损失后编译模型,将损失和优化器联系在一起。 选择训练的时期,一个时期是对数据集的完整传递,进行多次训练,并提供回调以确保在训练期间保存权重。 从实际的字符串中提取字符序列,使用 TensorFlow 的 TF 字符串 Unicode 拆分功能。 将字符序列转化为数字,使用 TF Keras 层中的 StringLookup 函数将每个字符映射到给定的 ID,也可使用同一层的 StringLookup 函数获得反向映射。 将处理后的数据作为神经网络的训练数据集,使用 TF Data Dataset API。
2024-12-24