Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ollama嵌入向量在模型后有什么用

Answer

嵌入向量在模型后的作用主要体现在以下方面:

  1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。
  2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。
  3. 支持多语言和不同粒度的检索任务:例如像 bge-m3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。

在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

GPT 的现状(State of GPT)

接下来,正如我们所看到的,当我们试图解决问题时,我们知道我们擅长什么,不擅长什么,我们会依赖于工具进行计算。你可能也想同样处理你的LLM。特别是,我们可能想要给它们提供计算器、代码解释器等,以及进行搜索的能力,有很多技术可以做到这一点。再次要记住的一点是,这些transformer在默认情况下可能不知道它们不知道的东西。你甚至可能想在提示中告诉transformer,「你在心算方面并不是很好,每当你需要进行大数的加法、乘法或其他操作时,请使用计算器。以下如何使用计算器的,使用这个token组合,等等等等。」你必须真正地写出来,因为模型默认情况下并不知道它擅长什么或不擅长什么,就像你和我一样。接下来,我认为非常有趣的一点是,我们从一个只能检索的世界转变到了完全依赖LLM记忆的世界。但实际上,这两个钟摆之间还有整个检索增强模型的空间,它在实践中表现得非常好。正如我所提到的,Transformer的上下文窗口是其工作记忆。如果你能将与任务相关的任何信息加载到工作记忆中,模型就会表现得非常好,因为它可以立即访问所有的记忆。所以,我认为很多人对基本的检索增强生成非常感兴趣。在底部,我有一个LLaMA索引的例子,它具有一个数据连接器,可以连接到各种类型的数据。你可以索引所有这些数据,并使得LLM可访问它。这里的新兴配方是你取相关的文档,将它们分成块,将它们全部嵌入,并基本上得到表示这些数据的嵌入向量。你将其存储在向量存储中,然后在测试时,你对你的向量存储进行一些查询。你获取可能与你的任务相关的块,并将它们填充到提示中,然后生成。这在实践中可以工作得相当好。

开发:LangChain-2023 AI应用发展回顾

最常用的向量存储正如前面提到的,检索是大语言模型应用程序的重要组成部分。向量存储正在成为检索相关上下文的主要方式。在LangChain中,我们与60多个向量存储集成——最常用的有哪些呢?我们看到本地向量存储是使用量最大的,其中Chroma、FAISS、Qdrant和DocArray均进入前5名。如果根据用户数量来计算,那么使用量最大的自然就是本地的免费向量存储。在托管的提供商中,Pinecone是唯一进入前5名的托管向量存储。Weaviate紧随其后,这表明原生向量数据库目前使用得比后添加向量功能的数据库更多。在那些添加了向量功能的数据库中,我们看到领先的是Postgres(PGVector)、Supabase、Neo4j、Redis、Azure Search和Astra DB。需要注意的是,这些排名基于使用给定提供商的用户数量。[heading1]最常用的嵌入[content]最常用的嵌入为了使用向量存储,您需要为文本片段计算嵌入。那么开发人员是如何做到这一点的呢?与大语言模型类似,OpenAI占据主导地位——但之后我们看到了更多样化。开源提供商使用得更多一些,其中Hugging Face位居第二,GPT4All和Ollama也进入前8名。在托管提供商方面,我们看到Vertex AI实际上超过了AzureOpenAI,Cohere和Amazon Bedrock也不遑多让。

Others are asking
如何将ollama下载到其他盘中
要将 ollama 下载到其他盘,您可以按照以下步骤进行操作: 1. 新建环境变量:ollama 默认的模型保存路径为 Windows:C:\\Users\\%username%\\.ollama\\models 。添加环境变量添加 OLLAMA_MODELS 环境变量。 2. 进入 ollama 官网下载:地址为 https://ollama.com/ 。 3. 下载语言模型:模型地址为 https://ollama.com/library 。 选择 llama 模型下载至本地。 选择本地文件夹,在 CMD 后粘贴刚才复制的命令。 开始下载,下载完成并测试。 4. 下载图像模型:模型地址为 https://ollama.com/library 。 选择 llava 模型下载至本地。 选择本地文件夹,在 CMD 后粘贴刚才复制的命令。 开始下载,下载成功。 5. 在 Comfy 中使用: 下载并安装 ollama 节点,下载地址: ,下载完成后安装到节点目录。 在 Comfy 中调用。 此外,还有以下相关信息供您参考: 为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 网站中,复制代码。然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。 部署大语言模型: 下载并安装 Ollama:点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R ,输入 cmd,点击回车。如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制以下命令行,粘贴进入,点击回车。回车后,会开始自动下载,等待完成。(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。
2025-01-13
如何部署ollama
以下是部署 Ollama 的详细步骤: 1. 下载并安装 Ollama: 根据您的电脑系统,点击进入 https://ollama.com/download 下载 Ollama。 下载完成后,双击打开,点击“Install”。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型): 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车。 如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制以下命令行,粘贴进入,点击回车。 回车后,会开始自动下载,等待完成。(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 3. 部署 Google Gemma: 首先进入 ollama.com,下载程序并安装(支持 windows,linux 和 macos)。 查找 cmd 进入命令提示符,输入 ollama v 检查版本,安装完成后版本应该显示 0.1.26,cls 清空屏幕,接下来直接输入 ollama run gemma 运行模型(默认是 2b),首次需要下载,需要等待一段时间,如果想用 7b,运行 ollama run gemma:7b 。 完成以后就可以直接对话了,2 个模型都安装以后,可以重复上面的指令切换。 4. 安装 Docker Desktop: 点击/复制到浏览器去下载 https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现下图,点击 ok,开始加载文件。注意!!!!这里下载相对比较快,下载完成后,不要点击“close and restart”,因为这样会直接重启,导致 llama3 下载中断。 这里先不点击,等待终端的模型下载完成后,再点击重启。 重启后,点击:“Accept” 。 选择第一个,点击"Finish" 。 然后会提示您注册账号,如果打不开网页,就需要科学上网了。 按照正常的注册流程,注册账号,并登录 Docker 即可。登录后会进入 Docker Desktop。此处完成。 5. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口(可以放心多个窗口,不会互相影响)。 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车。 如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将以下命令输入,等待下载。 出现上图,即是下载完成。 点击或复制下方地址进入浏览器:http://localhost:3000/auth/ 。 点击进行注册即可,注册输入昵称、邮箱、密码。注册完即可登录进入。 登入后,看到如下页面,点击顶部的 Model,选择“llama3:8b”。 完成。您已经拥有了一个属于自己的本地大语言模型。可以开始与他对话啦!ps.他的回复速度,取决于您的电脑配置。
2025-01-13
ollama跟llama.cpp差异
Ollama 和 llama.cpp 存在以下差异: 1. 功能特点: Ollama 是一个开源的大型语言模型服务,能方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同模型。 llama.cpp 是将 Facebook 的 LLaMA 模型在 C/C++ 中的实现。 2. 部署和使用: Ollama 的安装和使用相对简单,例如在 Mac 系统中,可通过以下两步完成:打开 ollama.com 下载应用并安装;在终端输入相应指令运行模型。 llama.cpp 编译时为利用 Metal 的 GPU 有特定命令,还需下载模型,且提供了 WebUI 供用户使用。 3. 支持的模型: Ollama 支持如 Google Gemma 等小型模型的本地部署。 llama.cpp 支持 LLaMA 模型。 4. 性能表现: Ollama 中 2b 版本反应速度快但互动话题有限,7b 版本输出内容质量相对高但可能有卡顿,对非英文语种反馈不稳定。
2024-12-09
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
ollama下载链接
Ollama 的下载链接为:https://ollama.com/download 。 Ollama 具有以下特点: 1. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可通过 https://ollama.com/library 查找并下载不同的模型,这些模型有不同参数和大小以满足不同需求和硬件条件。 4. 支持用户自定义模型,可通过简单步骤修改模型的温度参数等。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装完之后,确保 ollama 后台服务已启动(在 macOS 上启动 ollama 应用程序即可,在 Linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可通过 ollama 命令下载模型。
2024-11-07
如何通过ollama 搭建本地知识库
以下是通过 Ollama 搭建本地知识库的步骤: 1. 了解背景:本文思路来源于视频号博主黄益贺,旨在分享如何部署本地大模型及搭建个人知识库,让您了解相关核心技术及流程。 2. Ollama 简介:Ollama 是一个开源框架,用于简化本地运行大型语言模型的过程,是轻量级、可扩展的,提供简单 API 和预构建模型库,适合初学者和非技术人员,能推动大型语言模型的发展和应用。 3. 安装 Ollama:官方下载地址为 https://ollama.com/download ,安装完成后可通过访问特定链接判断是否安装成功。 4. 运行本地大模型:安装完成后,在命令行中运行相应命令,模型名称可通过查看,如选择 llama2 大模型,可根据机器配置选择合适参数的模型,运行时 Ollama 会自动下载大模型到本地。 此外,还有关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG 的相关内容,包括加载所需库和模块、从订阅源获取内容、为文档内容生成向量等步骤。
2024-10-12
可以嵌入AI玩具的硬件
以下是关于可以嵌入 AI 玩具的硬件的相关信息: 一个名为“跃然创新”的 20 人小微创业团队,将大模型装进毛绒玩具里,赋予毛绒玩具生命。其 CEO 李勇和 COO 高峰是资深的互联网+硬件从业者。 做儿童场景产品是李勇和高峰长久以来的梦想,源于对天猫精灵多数语音交互来自孩子这组数据的洞察。之前智能音箱的 AI 交互体验不够好,直到 ChatGPT 出现,他们确定将大模型和毛绒玩具结合,做一家陪伴孩子成长的 AI 毛绒玩具公司。 “情绪价值”是李勇理解儿童陪伴场景的关键词,认为 AI 毛绒玩具更具情感陪伴属性,相较于音箱、故事机、机器人、平板等,毛绒玩具更能带给孩子安全感。 明确了 AI+毛绒玩具的产品方向后,团队基于大模型做训练、引进 IP 版权、接洽供应链全速推进。未来除了联名 IP 外,也会有自己的原创 IP。 基于数百名孩子的调研结果,不同孩子使用 AI 毛绒玩具有区别,但基本都喜欢。李勇强调跟它聊得越多,它就越懂孩子、越能发现孩子的潜能。 由于毛绒玩具购买者与使用者分离,团队做了很多让家长有安全感的工作,比如家长可通过 App 查看聊天记录,危险话题会推送预警信息,还能从聊天记录了解孩子真实喜好,AI 毛绒玩具成为家长和孩子沟通的桥梁。 团队透露近期首款 AI 毛绒玩具产品会面世。
2025-01-14
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
Coze中能给变量在赋值中嵌入其它变量并同时 使用公式么
在 Coze 中,变量是以 keyvalue 形式存储数据的,是 Bot 的数据记忆功能。大语言模型会根据用户输入内容进行语义匹配,为定义的变量赋值并保存值。您可以在提示词中为 Bot 声明某个变量的具体使用场景。 创建变量可在创建 Bot 的页面进行。对变量进行赋值时,首先可以在给大模型的提示词中做声明,例如:“与您的用户进行互动,并根据 user_language 变量,用他们偏好的语言在线搜索。除非另有设置,用户查询的语言应指导您的回答和搜索”。这段提示词相当于告诉了 LLM,user_language 这个变量该如何赋值以及使用。 变量创建并赋值后,如 user_language 变量,就可以在工作流中作为变量使用。这一块解释起来有些抽象,具体可以参考后面的例子,真正用一遍就懂了。 综上,在 Coze 中能给变量在赋值中嵌入其它变量并同时使用公式,但具体的实现方式和规则需要根据具体的提示词和使用场景来确定。
2024-12-11
智能体如何嵌入课件
以下是关于智能体嵌入课件的相关内容: 在提示词培训课中: 点击“创建智能体”按钮。 输入对智能体的描述,如有准备好的提示词模板可直接粘贴。 ChatGLM 的智能体配置可自动生成,默认勾选增强能力,可根据实际需求调整,也可上传本地文件作为知识原料形成智能体的知识库。 在基础通识课中: 以可视化方式讲解 Transformer 架构,单词先拆分再嵌入(embedding),为保证语序不乱会做位置编码标记,嵌入后进入自助运力机制模型。 在 AI 智能体:企业自动化的新架构 Menlo Ventures 中: 轨道智能体被赋予更高级目标和更多自由度选择实现方法和工具,受程序性知识指导,拥有预定义工具并受保护栏和审查措施约束。 运行时会产生规划智能体评估应用程序当前状态、选择并执行最佳链条、进行审查和确保一致性等模式。 请注意,由于最近盗版事件频发,需要课件的扫群主二维码获取。
2024-10-16
如何自己弄一个网页嵌入型的智能问答对话AI
以下为您介绍如何自己弄一个网页嵌入型的智能问答对话 AI: AskAI 是一个不错的选择。它是一个构建自己的 AI 问答系统的平台,用户可以通过无代码的方式,在几分钟内构建自己的 AI 问答系统。 其特点和优势包括: 1. 能够快速构建:在短时间内即可完成。 2. 嵌入方式灵活:可以将构建好的系统分享到任何网页上,嵌入到网页中,或通过 API 进行访问。 3. 技术支持:使用 OpenAI 的嵌入技术。 AskAI 的官网是:https://www.myaskai.com 。通过该平台,您能够较为便捷地实现自己的网页嵌入型智能问答对话 AI 的需求。
2024-09-02
哪个服务可以把comfyui嵌入到现在有的网站
ComfyUI 是一个基于 Stable Diffusion 模型的图形用户界面(GUI),它允许用户通过节点式工作流设计和执行高级的图像生成任务。根据搜索结果,ComfyUI 可以作为一个独立的应用程序运行,并且似乎没有直接的选项将其嵌入到现有的网站中。 但是,如果你想将 ComfyUI 的功能集成到现有的网站中,你可以考虑以下几种方法: 1. 反向代理:可以在服务器上运行 ComfyUI,并使用反向代理服务(如 Nginx 或 Apache)将特定路由指向 ComfyUI 的接口,这样用户就可以通过你的网站访问 ComfyUI 的功能。 2. iframe 嵌入:如果 ComfyUI 提供了可以直接访问的 URL 并且可以作为服务运行,你可以尝试使用 HTML 的 `<iframe>` 标签将其嵌入到你的网页中。但是,出于安全和同源策略的考虑,这可能需要 ComfyUI 服务端的支持。 3. API 集成:如果 ComfyUI 支持 API 调用,你可以在自己的网站后端创建一个代理服务,将用户的请求转发给 ComfyUI 的 API,并将结果返回给前端用户。 4. 微服务架构:将 ComfyUI 作为微服务架构的一部分运行,并通过内部网络提供其功能,你的主网站应用程序可以通过服务间通信与之交互。 5. Web 服务集成:如果 ComfyUI 提供了 Web 服务接口,你可以在你的网站后端使用服务器端渲染技术(如 Node.js、PHP、Python 等)来与 ComfyUI 进行交云,并动态生成用户界面。 6. 容器化部署:使用 Docker 或其他容器化技术将 ComfyUI 部署为一个容器实例,并通过容器编排工具(如 Kubernetes)管理其运行,你的网站可以通过网络请求与之通信。 请注意,这些方法可能需要一定的技术知识和额外的配置工作。此外,确保任何集成都符合 ComfyUI 的使用条款和版权要求。如果你需要具体的技术指导,可能需要联系 ComfyUI 的开发者或查阅相关的开发者文档。
2024-04-23
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
向量检索在大语言模型中的应用主要是为了解决什么问题
向量检索在大语言模型中的应用主要是为了解决以下问题: 1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。 2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。 3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。 4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
2024-12-05
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
以图片为主的PDF文件向量化的本地大模型推荐
以下是关于以图片为主的 PDF 文件向量化的本地大模型的相关信息: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 技术实现。RAG 应用包括 5 个过程: 1. 文档加载:从多种来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 PDF 翻译的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择相关翻译选项。 3. Calibre(电子书管理应用):,下载安装并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传多种格式文件,支持选择领域和导出格式。 6. 彩云小译(App):下载后点击「文档翻译」,可导入多种格式文档,但有免费次数限制且进阶功能需付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-06
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27