Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ollama嵌入向量在模型后有什么用

Answer

嵌入向量在模型后的作用主要体现在以下方面:

  1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。
  2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。
  3. 支持多语言和不同粒度的检索任务:例如像 bge-m3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。

在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

GPT 的现状(State of GPT)

接下来,正如我们所看到的,当我们试图解决问题时,我们知道我们擅长什么,不擅长什么,我们会依赖于工具进行计算。你可能也想同样处理你的LLM。特别是,我们可能想要给它们提供计算器、代码解释器等,以及进行搜索的能力,有很多技术可以做到这一点。再次要记住的一点是,这些transformer在默认情况下可能不知道它们不知道的东西。你甚至可能想在提示中告诉transformer,「你在心算方面并不是很好,每当你需要进行大数的加法、乘法或其他操作时,请使用计算器。以下如何使用计算器的,使用这个token组合,等等等等。」你必须真正地写出来,因为模型默认情况下并不知道它擅长什么或不擅长什么,就像你和我一样。接下来,我认为非常有趣的一点是,我们从一个只能检索的世界转变到了完全依赖LLM记忆的世界。但实际上,这两个钟摆之间还有整个检索增强模型的空间,它在实践中表现得非常好。正如我所提到的,Transformer的上下文窗口是其工作记忆。如果你能将与任务相关的任何信息加载到工作记忆中,模型就会表现得非常好,因为它可以立即访问所有的记忆。所以,我认为很多人对基本的检索增强生成非常感兴趣。在底部,我有一个LLaMA索引的例子,它具有一个数据连接器,可以连接到各种类型的数据。你可以索引所有这些数据,并使得LLM可访问它。这里的新兴配方是你取相关的文档,将它们分成块,将它们全部嵌入,并基本上得到表示这些数据的嵌入向量。你将其存储在向量存储中,然后在测试时,你对你的向量存储进行一些查询。你获取可能与你的任务相关的块,并将它们填充到提示中,然后生成。这在实践中可以工作得相当好。

开发:LangChain-2023 AI应用发展回顾

最常用的向量存储正如前面提到的,检索是大语言模型应用程序的重要组成部分。向量存储正在成为检索相关上下文的主要方式。在LangChain中,我们与60多个向量存储集成——最常用的有哪些呢?我们看到本地向量存储是使用量最大的,其中Chroma、FAISS、Qdrant和DocArray均进入前5名。如果根据用户数量来计算,那么使用量最大的自然就是本地的免费向量存储。在托管的提供商中,Pinecone是唯一进入前5名的托管向量存储。Weaviate紧随其后,这表明原生向量数据库目前使用得比后添加向量功能的数据库更多。在那些添加了向量功能的数据库中,我们看到领先的是Postgres(PGVector)、Supabase、Neo4j、Redis、Azure Search和Astra DB。需要注意的是,这些排名基于使用给定提供商的用户数量。[heading1]最常用的嵌入[content]最常用的嵌入为了使用向量存储,您需要为文本片段计算嵌入。那么开发人员是如何做到这一点的呢?与大语言模型类似,OpenAI占据主导地位——但之后我们看到了更多样化。开源提供商使用得更多一些,其中Hugging Face位居第二,GPT4All和Ollama也进入前8名。在托管提供商方面,我们看到Vertex AI实际上超过了AzureOpenAI,Cohere和Amazon Bedrock也不遑多让。

Others are asking
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
Ollama配置
以下是关于 Ollama 配置的详细步骤: 1. 进入 ollama.com 下载程序并安装,该程序支持 Windows、Linux 和 MacOS 系统。 2. 查找 cmd 进入命令提示符(Windows 系统)或通过相应方式进入终端(Mac 系统),输入“ollama v”检查版本,安装完成后版本应显示 0.1.26。 3. 输入“cls”清空屏幕,然后直接输入“ollama run gemma”运行模型(默认是 2b 版本),首次需要下载,需等待一段时间。若想用 7b 版本,运行“ollama run gemma:7b”。 4. 完成以上操作后就可以直接对话。2b 版本的反应速度快,但能互动的话题有限。7b 版本能运行,但可能会有卡顿,输出内容质量相对较高,但无论 2b 还是 7b,对非英文语种的反馈都不是很稳定。 5. 模型里一些常用的内部指令:“/set”显示设置界面可调整的设置项,“/show”显示模型信息。 另外,还有一种部署 Ollama 的方式: 1. 点击进入 ollama.com 根据电脑系统下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将“http://127.0.0.1:11434/”复制进浏览器中,若出现相应字样,表示安装完成。 4. 下载 qwen2:0.5b 模型(可根据自身设备情况选择更大的模型)。 对于 Windows 电脑,点击 win+R,输入 cmd 点击回车。 对于 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 5. 复制相关命令行,粘贴进入并回车,等待下载完成。下载完成后,大模型已在本地运行,输入文本即可进行对话。
2025-02-16
如何在本机上安装ollama
在本机上安装 Ollama 的步骤如下: 1. 点击进入 https://ollama.com/download ,根据您的电脑系统下载 Ollama。 2. 下载完成后,双击打开,点击“Install”进行安装。 3. 安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器中。如果出现相关字样,表示安装完成。 此外,还需注意: 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型): 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车。 如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 安装完之后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序即可,在 linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可以通过 ollama 命令下载模型。
2025-02-06
Ollama
以下是关于 Ollama 的相关信息: 打标工具安装: 先去下载并安装 Ollama,然后打开 Powershell 运行相关命令。 Win 编辑 run_win.ps1 文件,Mac 编辑 run_mac.sh 文件,将目录中的图片路径和触发词填写,运行即可。 对于 Windows 版,打开 WebUI,找到 Tagger 选项卡,如果没有则参考教程安装插件。 前往 https://github.com/starik222/BooruDatasetTagManager/releases 下载软件包,解压缩后双击运行即可。 本地部署资讯问答机器人: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,可通过 https://ollama.com/library 查找并下载不同模型,以满足不同需求和硬件条件。 支持自定义模型,可修改模型的温度参数等设置特定的系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面。 安装时访问 https://ollama.com/download/ ,安装完后确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 应用实例本地部署 Google Gemma: 环境准备:进入 ollama.com 下载程序并安装(支持 windows、linux 和 macos),在命令提示符中输入 ollama v 检查版本,安装完成后版本应为 0.1.26,cls 清空屏幕,输入 ollama run gemma 运行模型(默认 2b),首次需下载,想用 7b 则运行 ollama run gemma:7b 。 常用内部指令:/set 显示设置界面可调整的设置项,/show 显示模型信息,/load<model> 加载已有模型,/bye 退出。 2b 反应速度快但互动话题有限,7b 输出内容质量相对较高但有卡顿,对非英文语种反馈不稳定。
2025-02-06
除了ollama外还有什么好用
除了 Ollama 外,以下是一些好用的本地部署或相关的工具和框架: 1. Google Gemma:Google 发布的家用版小模型,分别有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这种小模型可能不适合解决特别复杂的任务,但从趋势上看是模型本地化提升基础操作效率的模板。小型的 llama 也支持本地部署。 2. Langchain:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于多种操作系统,同时支持 cpu 和 gpu。提供模型库,用户可从中下载不同模型,还支持自定义模型、API 和集成,社区贡献丰富。 如果您想了解更多关于这些工具和框架的详细信息,建议您进一步查阅相关资料。
2025-02-03
如何将ollama下载到其他盘中
要将 ollama 下载到其他盘,您可以按照以下步骤进行操作: 1. 新建环境变量:ollama 默认的模型保存路径为 Windows:C:\\Users\\%username%\\.ollama\\models 。添加环境变量添加 OLLAMA_MODELS 环境变量。 2. 进入 ollama 官网下载:地址为 https://ollama.com/ 。 3. 下载语言模型:模型地址为 https://ollama.com/library 。 选择 llama 模型下载至本地。 选择本地文件夹,在 CMD 后粘贴刚才复制的命令。 开始下载,下载完成并测试。 4. 下载图像模型:模型地址为 https://ollama.com/library 。 选择 llava 模型下载至本地。 选择本地文件夹,在 CMD 后粘贴刚才复制的命令。 开始下载,下载成功。 5. 在 Comfy 中使用: 下载并安装 ollama 节点,下载地址: ,下载完成后安装到节点目录。 在 Comfy 中调用。 此外,还有以下相关信息供您参考: 为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站: 网站中,复制代码。然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。 部署大语言模型: 下载并安装 Ollama:点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R ,输入 cmd,点击回车。如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制以下命令行,粘贴进入,点击回车。回车后,会开始自动下载,等待完成。(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。
2025-01-13
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
可以嵌入AI玩具的硬件
以下是关于可以嵌入 AI 玩具的硬件的相关信息: 一个名为“跃然创新”的 20 人小微创业团队,将大模型装进毛绒玩具里,赋予毛绒玩具生命。其 CEO 李勇和 COO 高峰是资深的互联网+硬件从业者。 做儿童场景产品是李勇和高峰长久以来的梦想,源于对天猫精灵多数语音交互来自孩子这组数据的洞察。之前智能音箱的 AI 交互体验不够好,直到 ChatGPT 出现,他们确定将大模型和毛绒玩具结合,做一家陪伴孩子成长的 AI 毛绒玩具公司。 “情绪价值”是李勇理解儿童陪伴场景的关键词,认为 AI 毛绒玩具更具情感陪伴属性,相较于音箱、故事机、机器人、平板等,毛绒玩具更能带给孩子安全感。 明确了 AI+毛绒玩具的产品方向后,团队基于大模型做训练、引进 IP 版权、接洽供应链全速推进。未来除了联名 IP 外,也会有自己的原创 IP。 基于数百名孩子的调研结果,不同孩子使用 AI 毛绒玩具有区别,但基本都喜欢。李勇强调跟它聊得越多,它就越懂孩子、越能发现孩子的潜能。 由于毛绒玩具购买者与使用者分离,团队做了很多让家长有安全感的工作,比如家长可通过 App 查看聊天记录,危险话题会推送预警信息,还能从聊天记录了解孩子真实喜好,AI 毛绒玩具成为家长和孩子沟通的桥梁。 团队透露近期首款 AI 毛绒玩具产品会面世。
2025-01-14
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
Coze中能给变量在赋值中嵌入其它变量并同时 使用公式么
在 Coze 中,变量是以 keyvalue 形式存储数据的,是 Bot 的数据记忆功能。大语言模型会根据用户输入内容进行语义匹配,为定义的变量赋值并保存值。您可以在提示词中为 Bot 声明某个变量的具体使用场景。 创建变量可在创建 Bot 的页面进行。对变量进行赋值时,首先可以在给大模型的提示词中做声明,例如:“与您的用户进行互动,并根据 user_language 变量,用他们偏好的语言在线搜索。除非另有设置,用户查询的语言应指导您的回答和搜索”。这段提示词相当于告诉了 LLM,user_language 这个变量该如何赋值以及使用。 变量创建并赋值后,如 user_language 变量,就可以在工作流中作为变量使用。这一块解释起来有些抽象,具体可以参考后面的例子,真正用一遍就懂了。 综上,在 Coze 中能给变量在赋值中嵌入其它变量并同时使用公式,但具体的实现方式和规则需要根据具体的提示词和使用场景来确定。
2024-12-11
智能体如何嵌入课件
以下是关于智能体嵌入课件的相关内容: 在提示词培训课中: 点击“创建智能体”按钮。 输入对智能体的描述,如有准备好的提示词模板可直接粘贴。 ChatGLM 的智能体配置可自动生成,默认勾选增强能力,可根据实际需求调整,也可上传本地文件作为知识原料形成智能体的知识库。 在基础通识课中: 以可视化方式讲解 Transformer 架构,单词先拆分再嵌入(embedding),为保证语序不乱会做位置编码标记,嵌入后进入自助运力机制模型。 在 AI 智能体:企业自动化的新架构 Menlo Ventures 中: 轨道智能体被赋予更高级目标和更多自由度选择实现方法和工具,受程序性知识指导,拥有预定义工具并受保护栏和审查措施约束。 运行时会产生规划智能体评估应用程序当前状态、选择并执行最佳链条、进行审查和确保一致性等模式。 请注意,由于最近盗版事件频发,需要课件的扫群主二维码获取。
2024-10-16
如何自己弄一个网页嵌入型的智能问答对话AI
以下为您介绍如何自己弄一个网页嵌入型的智能问答对话 AI: AskAI 是一个不错的选择。它是一个构建自己的 AI 问答系统的平台,用户可以通过无代码的方式,在几分钟内构建自己的 AI 问答系统。 其特点和优势包括: 1. 能够快速构建:在短时间内即可完成。 2. 嵌入方式灵活:可以将构建好的系统分享到任何网页上,嵌入到网页中,或通过 API 进行访问。 3. 技术支持:使用 OpenAI 的嵌入技术。 AskAI 的官网是:https://www.myaskai.com 。通过该平台,您能够较为便捷地实现自己的网页嵌入型智能问答对话 AI 的需求。
2024-09-02
如何将自有的材料做向量化处理
很抱歉,目前没有关于如何将自有的材料做向量化处理的相关内容。但一般来说,将自有材料进行向量化处理可以考虑以下步骤: 1. 数据清洗和预处理:清理和整理材料中的噪声、错误和不一致的数据。 2. 特征提取:根据材料的特点选择合适的特征,例如文本材料可以提取词袋模型、TFIDF 等特征。 3. 选择向量化方法:常见的有词向量(如 Word2Vec、GloVe 等)、文档向量(如 Doc2Vec)等。 4. 训练模型:使用选择的向量化方法和预处理后的数据进行训练。 由于缺乏具体的材料类型和应用场景等详细信息,以上步骤仅为一般性的指导,实际操作可能会有所不同。
2025-02-06
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
向量检索在大语言模型中的应用主要是为了解决什么问题
向量检索在大语言模型中的应用主要是为了解决以下问题: 1. 由于大模型的输入窗口有限,通过文本分割器将文档分割成较小的对象,方便后续的检索和生成,在较短的文本中更容易找到相关信息。 2. 利用文本嵌入器将文本转换为高维向量,通过衡量文本之间的相似度实现检索功能。 3. 借助向量存储器存储和查询嵌入,通常使用索引技术如 Faiss 或 Annoy 加速嵌入的检索。 4. 检索器根据文本查询返回相关的文档对象,常见的实现如向量存储器检索器使用向量存储器的相似度搜索功能进行检索。
2024-12-05
数据如何向量化
数据向量化是为了实现高效的文档检索,将原始的文本数据转化为数值向量的过程。其目的是将文本数据映射到低维向量空间,使语义相似的文本距离较近,不相似的较远。但这一过程会导致一定程度的信息损失,因为文本的复杂性和多样性难以用有限向量完全表达,可能忽略细节和特征,影响文档检索准确性。 在语义搜索中,根据用户问题从文档集合中检索语义最相关的文档,主流方法是基于数据向量化结果,利用向量空间中的距离或相似度度量语义相似度,但存在局限性,如不能完全反映真实语义相似度,向量空间中的噪声和异常值会干扰结果,导致准确率无法 100%保证。 在计算机科学和数据分析中,向量常被用作表示数据点的方式,是一个数值列表或数组,每个数值代表数据点的一个特征。多维数据运算常以矩阵形式进行,矩阵乘法是基本操作。归一化是数据预处理的关键技术,用于调整数值数据范围,常用方法有最小最大缩放和 Z 得分标准化。 在向量数据库中,当用户输入查询时,如“激动人心的科幻冒险”,会转换成一个向量,例如,表示对不同元素的偏好程度。向量数据库存放的是词在不同维度上的相对位置,数据的存储和检索与传统 Excel 和关系数据库有很大不同。关于文字如何转换成向量,实际的向量结构会很复杂。
2024-10-12
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
千帆大模型开发平台
百度智能云的千帆大模型平台在解决大模型的调用、开发和应用开发方面表现出色。它支持调用文心大模型全系列模型,并提供全面的工具链,支持定制化的模型开发。在应用开发上,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 2024 年上半年,百度智能云在 MaaS 市场和 AI 大模型解决方案市场中均获得第一名,市占率分别为 32.4%和 17%。MaaS 业务主要依托百度智能云千帆大模型平台提供服务,AI 大模型解决方案方面沉淀了八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力,有助于企业更稳定、高效地实现多任务分解和执行。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17