Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义

Answer

以下是对您所提到的这些内容含义的解释:

大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。

多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。

数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。

算力:指用于支持大语言模型训练和运行的计算能力。

算法:是大语言模型实现各种功能的数学和逻辑方法。

预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。

微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。

RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。

自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。

Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。

Token:在自然语言处理中,是文本的基本单位。

神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。

向量:在大语言模型中,用于表示文本等数据的数学形式。

Scaling Law:关于大语言模型规模和性能之间关系的规律。

Content generated by AI large model, please carefully verify (powered by aily)

References

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

问:RAG 是什么?

1.检索:此过程涉及利用用户的查询内容,从外部知识源获取相关信息。具体来说,就是将用户的查询通过嵌入模型转化为向量,以便与向量数据库中的其他上下文信息进行比对。通过这种相似性搜索,可以找到向量数据库中最匹配的前k个数据,作为当前问题的补充背景信息。2.数据库索引:指的是在离线状态下,从数据来源处获取数据并建立索引的过程。具体而言,构建数据索引包括以下步骤:3.数据索引:包括清理和提取原始数据,将PDF、HTML、Word、Markdown等不同格式的文件转换成纯文本。4.分块:将加载的文本分割成更小的片段。由于语言模型处理上下文的能力有限,因此需要将文本划分为尽可能小的块。5.嵌入和创建索引:这一阶段涉及通过语言模型将文本编码为向量的过程。所产生的向量将在后续的检索过程中用来计算其与问题向量之间的相似度。由于需要对大量文本进行编码,并在用户提问时实时编码问题,因此嵌入模型要求具有高速的推理能力,同时模型的参数规模不宜过大。完成嵌入之后,下一步是创建索引,将原始语料块和嵌入以键值对形式存储,以便于未来进行快速且频繁的搜索。6.增强:接着,将用户的查询和检索到的额外信息一起嵌入到一个预设的提示模板中。7.生成:最后,将给定的问题与相关文档合并为一个新的提示信息。随后,大语言模型(LLM)被赋予根据提供的信息来回答问题的任务。根据不同任务的需求,可以选择让模型依赖自身的知识库或仅基于给定信息来回答问题。如果存在历史对话信息,也可以将其融入提示信息中,以支持多轮对话。文章源链接:https://juejin.cn/post/7341669201008869413(作者:lyc0114)

02-基础通识课

[heading2]总结大语言模型及多模态大模型的应用与原理RAG的原理和应用:RAG通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG可在本地运行:RAG是一个检索生成框架,能够支持在本地运行。AI搜索的能力:AI搜索结合了多种能力,如fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些AI搜索平台专注于特定领域,如为程序员提供代码搜索。多模态大模型的特点:多模态大模型像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型的区别:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。

Others are asking
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
scalinglaw什么意思
Scaling Law(规模定律)指的是在模型预训练中,只要三个关键因素——模型大小、数据量、训练时间(计算量)不断增长,模型性能就能大斜率指数级爆发式提升。足够的规模带来——“涌现”,即自发地产生复杂智能,完成复杂问题的推理、并形成非同分布下的泛化性提升。 2024 年整年,一个争论笼罩着 AI 界——Scaling Law 是正确的,但在现实中,Scaling Law 是不是已经触及天花板。算力需求已达惊人规模,基础设施跟不上发展速度,优质数据接近极限,合成数据训练存在“近亲繁殖”问题可能导致模型能力长期衰退。 在 OpenAI 的相关研究中,“良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法”为检测 Scaling Law 做好了准备。同时,在 Sora 的研究中,也遵循了 Scaling Law,即在足量的数据、优质的标注、灵活的编码下,Scaling Law 在 transformer+diffusion model 的架构上继续成立,其想法很大程度上沿袭了大语言模型的经验。
2024-12-30
scaling law
以下是关于“scaling law”的相关信息: 在 AI 领域,“scaling law”(规模法则)具有重要意义。以下是一些相关的研究和报告: 在 GPT 相关的研究中,如Tom Henighan 等人的“Scaling laws for autoregressive generative modeling”(2020),对语言模型的规模法则进行了探讨。 在关于 OpenAI 技术栈的研究中,“良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法”为检测“scaling law”做好了准备。例如在 GPT1、2、3 几代的迭代路径,以及 Sora 中,都可以在更小规模的模型和数据上检测算法的效果。同时,公理 3“Emerging properties”也是一条检验公理,用于判断“scaling law”带来的是“质变”而非“量变”。当模型随着“scaling law”的进行,突然能够稳定掌握之前不能掌握的能力,这是所有人能够直观体验到的。 此外,还有一些相关的参考文献,如Ian McKenzie 等人的“Inverse Scaling Prize:First round winners”(2022)等。
2024-12-27
scaling law 是什么
Scaling Law 指的是在 AI 领域中,一旦选择了良好且通用的数据表示、标注和算法,就能找到一套通用规律,保证在数据越多、模型越大的情况下效果越好,并且这套规律稳定到可以在训练模型之前就能预知其效果。 例如,在 OpenAI 的方法论中,强大的算力加持的通用的 AI 算法是 AGI 路径的正道,而 Scaling Law 是 AGI 的充分条件。AI 本质上被认为是一堆 Scaling Law,今天能看到最好的模型具有较大规模的 FLOPs,其数量级还会持续增长。同时,在诸如 OpenAI o1 中,通过设置参数控制树结构的拓展模式,虽对其是否能称为 Scaling Law 存在争议,但这种方式具有极好的可扩展性,能够通过增加算力提升效果。
2024-11-02
大模型相关术语中,参数和Token分别指什么?
在大模型相关术语中: 参数:主要指模型中的权重(weight)与偏置(bias),大模型的“大”通常体现在用于表达 token 之间关系的参数数量众多,例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级。 Token:大模型有着自己的语言体系,Token 是其语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型的语言,这种转换的基本单位就是 Token。不同厂商的大模型对 Token 的定义可能不同,以中文为例,通常 1 Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,通常都是以 Token 为单位计量的。Token 可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization),在将输入进行分词时,会对其进行数字化,形成一个词汇表。
2025-02-13
什么是tokens
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同的语境下,一个 Token 可能代表一个字、一个词,或者是一个句子。在英文中,一个 Token 通常是一个词或者是标点符号。在一些汉语处理系统中,一个 Token 可能是一个字,也可能是一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 Tokens。这些 Tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,Token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 Token 会关联一个预测,这个预测可以是下一个 Token 的预测,也可以是该 Token 的属性预测,如词性、情感等。 训练 Token 的数量会影响模型的性能和准确性。更多的训练 Token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 Token 也会增加计算的复杂性和计算资源的需求。 很多同学把 Token 理解为中文语义里的“字节”,这种理解有一定的类比相似性,因为“字节”是计算机存储和处理数据的基本单元,而“Token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“Token”不仅代表文本数据中的一个单位,而且每个“Token”都可能携带了丰富的语义信息。比如,在处理一句话时,“Token”可能表示一个字,一个词,甚至一个短语,这些都可以被认为是语言的基本单元。同时,每个“Token”在模型中都有一个对应的向量表示,这个向量包含了该“Token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。例如中文中的“你”字对应特定的 Unicode 编码。GPT 实际是将我们输入的文字转换成 Token,然后通过 GPT 模型预测 Token,再将 Token 转换成文字,最后再输出给我们。通过 Token 的学习,能感觉到 ChatGPT 理解文本的方式和人类并不相同,它在以自己的方式理解这个世界。 在 ComfyUI SD3 中,如输入的文字描述会被转换为 Tokens(文本向量),其中包括使用 CLIPG/14、CLIPL/14、T5 XXL 等预训练文本编码器将描述文字转换为 Tokens,每个编码器生成 77 个 Token,总共 154 个 Token 等一系列处理过程。
2025-02-07
100 万 tokens 什么概念
100 万 tokens 具有以下重要意义和影响: 算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力经历了从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token 的发展历程。 产品视角:长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化。 具体应用:Gemini1.5 支持 100 万 token,可以一次性处理大量信息,比如 1 小时的视频,11 小时的音频,超过 30,000 行代码或超过 700,000 个单词的代码库。Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 Token。ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 Token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 Token。Token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时,会遗忘最前面的对话。若想直观查看 GPT 如何切分 token,可以打开。此外,英文的 Token 占用相对于中文较少,因此很多中文长 Prompt 会被建议翻译成英文设定,然后要求中文输出。
2025-01-28
token是什么
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 Token 可能代表一个字、一个词或一个句子。在英文中,通常是一个词或标点符号;在一些汉语处理系统中,可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 Tokens。这些 Tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,Token 可以被理解为语言模型接收和处理的最小信息单元。在训练过程中,每个 Token 会关联一个预测,这个预测可以是下一个 Token 的预测,也可以是该 Token 的属性预测,如词性、情感等。 训练 Token 的数量会影响模型的性能和准确性。更多的训练 Token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 Token 也会增加计算的复杂性和计算资源的需求。 很多同学把 Token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“Token”是语言模型处理文本信息的基本单元。但不准确的地方在于:“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“Token”不仅代表文本数据中的一个单位,而且每个“Token”都可能携带丰富的语义信息。比如,在处理一句话时,“Token”可能表示一个字、一个词甚至一个短语,同时每个“Token”在模型中都有一个对应的向量表示,这个向量包含了该“Token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。有意思的是,Unicode 不仅有自然语言,还包含 emoji 等自然语言之外的符号,这也是 ChatGPT 能理解和回复 emoji 的原因。所以,GPT 实际是将我们输入的文字转换成 Token,然后通过 GPT 模型预测 Token,再将 Token 转换成文字,最后输出给我们。 通过 Token 的学习,能感觉到 ChatGPT 理解文本的方式和人类不同,它在以自己的方式理解世界。尽管“Token”和“字节”都是基本的处理单位,但“Token”在大语言模型中的含义和作用比“字节”在计算机中的含义和作用更加丰富和复杂。 另外,如果曾经“机翻”过一些文档,会经常看到“Token”被自动翻译工具翻译为“令牌”。GPT 的输入和输出不是到中文字的粒度,它能处理几乎世界上所有流行的自然语言,所以需要引入 Token 的概念,Token 是自然语言处理的最细粒度,GPT 的输入和输出都是一个个的 Token。GPT 适用于几乎所有流行的自然语言,其 Token 需要兼容几乎人类的所有自然语言,通过 Unicode 编码来实现。
2025-01-23
AI中常说的token是什么
Token 是大模型语言体系中的最小单元。 在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。 当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。 不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。 例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-08
RAG的原理是啥
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,其原理如下: 对于大语言模型(LLM),RAG 的作用类似于开卷考试对学生的作用。在开卷考试中,学生可借助参考资料查找解答问题的相关信息,重点考察推理能力而非记忆能力。同样,在 RAG 中,事实性知识与 LLM 的推理能力相分离,被存储在易于访问和及时更新的外部知识源中,包括参数化知识(模型在训练中学习得到,隐式存储在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。 回顾 LLM 的原理,是将互联网文献材料降维到 latent space 中,并通过 transformer 方式学习其中的“经验”。但固定文献资料可能导致无法回答某些问题,RAG 的出现解决了这一问题,它允许模型到搜索引擎上搜索问题相关资料,并结合自身知识体系综合回复。 RAG 中的“检索”环节并非简单操作,涉及传统搜索的逻辑,如对输入问题的纠错、补充、拆分,以及对搜索内容的权重逻辑等。例如,对于“中国界世杯夺冠那年的啤酒销量如何”的问题,会先纠错为“中国世界杯夺冠那年的啤酒销量如何”,然后拆分为两个问题进行综合搜索,再将搜索到的资料提供给大模型进行总结性输出。 LLM 需要 RAG 是因为 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在黑盒、不可控和幻觉等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,不影响原有知识。 3. 数据库内容明确、结构化,结合模型理解能力,降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型训练成本,新知识存储在数据库即可,无需频繁更新模型。
2025-02-20
RAG最新进展
RAG(检索增强生成)是由 Lewis 等人于 2020 年中期提出的一种大语言模型领域的范式。 其发展经历了以下阶段: 1. 2017 年创始阶段,重点是通过预训练模型吸收额外知识以增强语言模型,主要集中在优化预训练方法。 2. 大型语言模型如 GPT 系列在自然语言处理方面取得显著成功,但在处理特定领域或高度专业化查询时存在局限性,易产生错误信息或“幻觉”,特别是在查询超出训练数据或需要最新信息时。 3. RAG 包括初始的检索步骤,查询外部数据源获取相关信息后再回答问题或生成文本,此过程为后续生成提供信息,确保回答基于检索证据,提高输出准确性和相关性。 4. 在推断阶段动态检索知识库信息能解决生成事实错误内容的问题,被迅速采用,成为完善聊天机器人能力和使大语言模型更适用于实际应用的关键技术。 RAG 在多个基准测试中表现出色,如在 Natural Questions、WebQuestions 和 CuratedTrec 等中表现抢眼。用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体和多样,FEVER 事实验证使用后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行大语言模型结合使用提高能力和事实一致性,在 LangChain 文档中有相关使用例子。 同时,对增强生成检索的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题也得到解决。
2025-02-20
RAG和微调是什么,分别详细讲讲一下它是怎么实现的
RAG(RetrievalAugmented Generation,检索增强生成)是解决大语言模型在实际应用中存在的一些问题的有效方案。 大语言模型存在以下问题: 1. 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 2. 幻觉问题:基于数学概率的文字预测导致可能提供虚假、过时或通用的信息。 3. 数据安全性:企业担心私域数据上传第三方平台训练导致泄露。 RAG 可以让大语言模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解模型如何生成最终结果。它类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。 微调类似于让学生通过广泛学习内化知识。这种方法在模型需要复制特定结构、样式或格式时非常有用。微调可以提高非微调模型的性能,使交互更有效率,特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向模型提供复杂的指令。然而,微调不适合合并模型中的新知识或需要新用例的快速迭代。 参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2025-02-19
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 引入 RAG 来完成这类任务,它把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有数据库存储和更新稳定、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案,旨在帮助理解设计和实施 RAG 系统面临的复杂挑战,激发开发更强大且适用于生产环境的 RAG 应用。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18