Navigate to WaytoAGI Wiki →
Home
Events
Websites
Agents
Prompts
Chat with Wiki
Blog
🇺🇸 English
Login
Home
/
Question List
/
Question Detail
请给我找一个安装ollama-deep-researcher的完整教程,用于windows上。
Answer
很抱歉,目前没有关于在 Windows 上安装 ollama-deep-researcher 的完整教程。建议您通过以下途径获取相关信息:
官方网站:访问 ollama-deep-researcher 的官方网站,查找针对 Windows 系统的安装指南。
相关技术论坛:在专业的技术论坛上搜索相关主题,可能会有其他用户分享的安装经验和教程。
视频平台:部分视频平台上可能有关于此软件在 Windows 上安装的演示视频。
Content generated by AI large model, please carefully verify (powered by aily)
Ask Again
Others are asking
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
如何在电脑上用chatbox框架,使用ollama搭建deepseek模型
在电脑上使用 Chat Box 框架,通过 Ollama 搭建 DeepSeek 模型的步骤如下: 1. 阿里云百炼平台: 百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 百炼平台无需部署,可直接使用 DeepSeek R1 模型。 DeepSeek R1 模型的价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 使用 DeepSeek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态可以识别更多输入信息,如读文件、图片等,而 DeepSeek R1 本身不是多模态模型。 通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 DeepSeek R1,并获取 API key。 API key 可删除旧的并重新创建,方便本地软件连接。 2. Docker + RAGFlow + Ollama 搭建: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,模型取决于运行的模型。 配置基础 URL。 导入一个 embedding 模型,用于文本向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析好之后,进入检索测试。 测试没问题,可进入聊天界面,助理设置可自行设置。 对于开源模型,如 DeepSeek、Llama 等,可以使用以下方式: 1. Inference Provider:使用 Together AI 等推理服务提供商,在线体验和调用各种开源模型。 2. LM Studio:使用 LM Studio 等本地应用程序,在个人电脑上运行和部署较小的开源模型。
2025-03-03
ollama是什么,使用场景有什么
Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。 它具有以下特点和优势: 1. 支持多种大型语言模型:包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,能让用户轻松在本地环境中启动和运行大模型。 3. 模型库:提供丰富的模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,通过 https://ollama.com/library 查找。 4. 自定义模型:用户能通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 总的来说,Ollama 是一个高效、功能齐全的大模型服务工具,不仅适用于自然语言处理研究和产品开发,也适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户。 其使用场景包括但不限于: 1. 自然语言处理研究。 2. 产品开发。 安装方法:官方下载地址为 https://ollama.com/download 。安装完成后,在 macOS 上启动 ollama 应用程序,在 Linux 上通过 ollama serve 启动,可通过 ollama list 确认是否安装成功。运行大模型时,在命令行中输入相应命令即可,模型会自动下载到本地。在 Python 程序中使用时,需确保 ollama 服务已开启并下载好模型。
2025-02-22
Ollama
以下是关于 Ollama 的相关信息: 在电脑上运行本地大模型的相对简化模式: 步骤: 1. 打开 Ollama 官网 https://ollama.com,下载应用并安装。 2. 在 Mac 系统搜索 terminal 或终端,点击回车,弹出的简洁框框就是。输入想要运行的大模型(例如:ollama run llama2),并回车。等待下载完成,即可输入内容,和 llama2 愉快交流。 TagTool With Ollama 打标工具: 先去下载并安装 Ollama,然后打开 Powershell 运行相关命令。 Win 编辑 run_win.ps1 文件,Mac 编辑 run_mac.sh 文件,将目录中的图片路径和触发词填写,运行即可。 从 LLM 大语言模型、知识库到微信机器人的全本地部署教程中的 Ollama 部署: 步骤: 1. 点击进入,根据电脑系统,在 https://ollama.com/download 下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。 5. 对于 Windows 电脑,点击 win+R,输入 cmd,点击回车;对于 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车。等待下载完成即可。
2025-02-18
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
Ollama配置
以下是关于 Ollama 配置的详细步骤: 1. 进入 ollama.com 下载程序并安装,该程序支持 Windows、Linux 和 MacOS 系统。 2. 查找 cmd 进入命令提示符(Windows 系统)或通过相应方式进入终端(Mac 系统),输入“ollama v”检查版本,安装完成后版本应显示 0.1.26。 3. 输入“cls”清空屏幕,然后直接输入“ollama run gemma”运行模型(默认是 2b 版本),首次需要下载,需等待一段时间。若想用 7b 版本,运行“ollama run gemma:7b”。 4. 完成以上操作后就可以直接对话。2b 版本的反应速度快,但能互动的话题有限。7b 版本能运行,但可能会有卡顿,输出内容质量相对较高,但无论 2b 还是 7b,对非英文语种的反馈都不是很稳定。 5. 模型里一些常用的内部指令:“/set”显示设置界面可调整的设置项,“/show”显示模型信息。 另外,还有一种部署 Ollama 的方式: 1. 点击进入 ollama.com 根据电脑系统下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将“http://127.0.0.1:11434/”复制进浏览器中,若出现相应字样,表示安装完成。 4. 下载 qwen2:0.5b 模型(可根据自身设备情况选择更大的模型)。 对于 Windows 电脑,点击 win+R,输入 cmd 点击回车。 对于 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 5. 复制相关命令行,粘贴进入并回车,等待下载完成。下载完成后,大模型已在本地运行,输入文本即可进行对话。
2025-02-16
如何在中国国内windows系统下安装Chatagi的软件
在中国国内 Windows 系统下安装 ChatGPT 相关软件的步骤如下: 1. 对于苹果系统: 在 AppleStore 下载 chatgpt:中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。最终在 AppleStore 搜到 chatgpt 结果后下载安装,注意别下错。 支付宝购买苹果礼品卡并充值,订阅付费 App:打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。包括支付宝购买礼品卡、在 apple store 中兑换礼品卡、在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 2. 对于青椒云软件(Windows 系统): 电脑端打开网站 http://account.qingjiaocloud.com/signin?inviteCode=2GSJQYVF ,注册/登陆账号。 跳转到下载页,根据自己电脑的系统选择相应版本下载。 客户端登录,电脑端打开登陆界面,短信登录。 进入界面,选择华南 6,点击“新增云桌面”选择【定制产品】选择【WayToAGIAIPO 大雨编程共学】,支付 0.01 元即可开机使用。 开机进入桌面,停止使用时一定要回到客户端页面,点击关机按钮,否则时长会一直消耗。
2024-12-16
ComfyUI的Windows下载包
以下是关于 ComfyUI 的 Windows 下载包的相关信息: 下载地址:https://github.com/comfyanonymous/ComfyUI ,您可以在此下载安装包,也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip 。 安装方法: 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 目前安装 ComfyUI 有以下两种方法,您可以根据自己的需求选择: 本地安装: 命令行安装:普适性最强,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说可能有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。下载最新的版本,解压就能使用。 云端安装:云端配置相对较高,生成图片的速度会更快,但是需要一定的费用。如果您想在云端安装,可以跳到。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 汉化安装方法:在网盘连接中下载汉化包,并解压。将文件夹拖入到 E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。启动 ComfyUI 界面,点击右侧的小齿轮。在弹出界面的底部就可以切换语言了,选择中文即可。点击下方的“切换语言”,就可以在中文和英文之间随意切换。需要 blender 插件和汉化包的朋友,可以关注公众号【白马与少年】,发送【ComfyUI】即可获取链接。
2024-11-22
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
未来,想要用AI更多,买苹果电脑还是windows电脑
在未来如果想要更多地使用 AI ,选择苹果电脑还是 Windows 电脑取决于您的具体需求和使用场景。 苹果电脑通常具有出色的稳定性和优化的操作系统,其硬件和软件的整合度较高,对于一些特定的 AI 应用,如基于苹果生态的开发和设计工作,可能会有较好的体验。 Windows 电脑则具有更广泛的硬件选择和软件兼容性。在 AI 领域,许多专业的软件和工具在 Windows 平台上也有良好的支持。 如果您更注重系统的稳定性和一体化体验,且对苹果的生态系统有偏好,那么苹果电脑可能是不错的选择。但如果您需要更多的硬件配置选择和更广泛的软件支持,Windows 电脑可能更适合您。 最终的决策还需综合考虑您的预算、具体的 AI 应用需求以及个人使用习惯等因素。
2024-11-01
怎么在 windows 部署 微信机器人
以下是在 Windows 部署微信机器人的详细步骤: 一、安装环境 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 python。 3. 粘贴入以下代码,确认是否有 pip。 4. 两步命令输入完,核对一下。如果有的话,会分别显示出版本号,可以跳过“安装环境这一步,直接到“二、部署项目”。如果没有,需要按照以下步骤安装: 先进行 python 的安装,安装包已准备好,直接点击下载。 关闭窗口,再次运行那两行命令会发现已经有了。 二、部署项目 1. 下载 COW 机器人项目,解压缩。 2. 解压后,打开 COW 文件夹。 3. 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 4. 在 Powershell 窗口中,粘贴进入:pip install r requirements.txt ,等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 。 5. 上边的都执行完成后,关闭窗口。在当前目录下,找到 configtemplate.json 文件。 6. 新生成的便是配置文件,右键使用记事本打开这个文件,修改相应内容。 删除新文件里的所有代码。 复制提供的代码,粘贴到文件里,并找到第 4 行,把一开始注册并保存好的千问 API key 粘贴到双引号里。 7. 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json 。 8. 双击 config.json,进入后,设置下 password 和 admin_users ,可以设置为和示例一样,后边再改,点击保存后关闭。 注意:本教程完成后,程序将在您的电脑本地运行,假如您关掉了窗口,那么进程也就结束。所以,如果您想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。Mac 系统步骤也是一样,只是打开命令符的命令些许不同,遇到问题问大模型就好了。 此外,还有基于 Hook 机制的微信 AI 机器人部署步骤: 1. 接下来,需要使用一个特定版本的微信,已为您准备好,点击下载,下载后直接替换安装。(安装后,有可能您在的群却显示退出,其实没事,发个消息就好了,并不是真的退出) 2. 下载 NGCbot 机器人项目,解压缩。 3. 解压后,打开 NGCbot 文件夹。 4. 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 5. 打开 shell 窗口后,粘贴进入相关代码,并点击回车。 6. 粘贴进入相关代码,并点击回车,等待安装,安装完成后,关闭窗口即可。 7. 然后在当前的 NGCbot 文件夹下,找到 Config 文件,找到 config.yaml,右键选择打开方式,选择用记事本方式打开。 8. 打开后看到相应页面,把 Administrators 先改成特定内容。如果您已经有了 FastGPT 或者 OpenAI 的 key,可以把这里的 Ai_Lock,修改成“1”。然后拉到最下边,在 OpenAI 那里,去添加您的 AI 模型 key。填写格式,参照原有的格式即可。
2024-09-09
进行DeepSeek本地化部署有哪些方法?
进行 DeepSeek 本地化部署的方法如下: 如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。
2025-03-08
DEEPSEEK 相关资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-03-08
openai deep research使用技巧
OpenAI 的 Deep Research 功能能够整合多源信息,进行复杂的信息查询与分析,并生成专业水准的报告,同时详细展示思考和搜索过程。目前,该功能仅支持文本输出,未来还将增加嵌入式图片、数据可视化等功能。使用入口为在 ChatGPT 输入框中选择「Deep Research」模式,输入问题后即可开始体验。 在 OpenAI 推出「Deep Research」功能一天后,Hugging Face 的工程师迅速联合推出了免费开源的版本 Open Deep Research,能自主浏览网页、滚动页面、处理文件,以及基于数据进行计算。使用入口为前往 Demo 网站(opendeepresearch.vercel.app)体验。 Deep Research 让 AI 自动完成多步骤研究任务,快速分析海量信息并生成专业报告,具备自动化信息汇总、文献引用与多领域适用性,适合科研、工程、金融等行业。目前向 Pro 用户开放,未来将扩展至 Plus 和 Team 用户,并提供更强大的功能。 该智能体基于优化版 OpenAI o3 模型,结合网络浏览和 Python 分析能力,实现高效研究,适用于科学、政策、工程等高强度知识工作,也能帮助购物者做复杂决策。Pro 用户已可使用,后续将逐步向 Plus、Team 和企业用户开放。
2025-03-08
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
怎么把OFFICE 和DEEPSEEK 结合
以下是关于将 Office 和 DeepSeek 结合的一些信息: 1. 可以参考《》,其中介绍了通过结合 VS Code、Cline 插件和 Deepseek API 等工具提升 AI 的应用能力,用户可以实现自动发送邮件、查找重复文件、网页抓取翻译等功能。 2. 参考《》,了解如何将飞书多维表格与 DeepSeek R1 结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息,甚至利用 AI 生成文案。 目前提供的信息中暂未直接提及 Office 与 DeepSeek 结合的具体方式,但您可以从上述类似的结合案例中获取一些思路和启发。
2025-03-08
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方是硅谷味儿的:将其比喻成“AI 界的拼多多”是偏颇的,其在 2024 年 5 月发布的 DeepSeekV2 以多头潜在注意力机制(MLA)架构创新在硅谷引发轰动,而在国内被描摹成“大模型价格战的发起者”,这体现了其与硅谷更有对话和交流的密码。 2. V3 可能是 DeepSeek 的 GPT3 时刻:若 V3 真是如此,未来充满未知,但 DeepSeek 应会为全人类的人工智能事业做出更大贡献,且它已是中国最全球化的 AI 公司之一,赢得全球尊重的秘方也是硅谷味儿的。 3. 一个提示词让其能力更上一层楼:通过 Coze 做效果对比测试,使用方法为在 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek,阅读开场白后正式开始对话。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量、设计阈值系统、用 XML 规范设定等。完整提示词版本为 v1.3,特别鸣谢李继刚的【思考的七把武器】和 Thinking Claude、Claude 3.5 Sonnet 等。
2025-03-08